

Massachusetts Department of Environmental Protection - Drinking Water Program LCR-E Lead and Copper - 90th PERCENTILE COMPLIANCE Report (For Systems Required to Collect 5 Samples)

I. PWS INFORMA	HON. Please				lan for approved sam	oling locations.	
PWS ID #:	1106004		City	/ Town:	GILL		
PWS Name:	an Dichtendary				PWS Class: COM 🗌 NTNC 🖂		
Sampling	☑ FIRST SEMI-ANNUAL SAMPLING PERIOD				REDUCED - EVERY THREE YEARS		
Frequency:	SECOND SEMI-ANNUAL SAMPLING PERIOD				LEAD SERVICE LINE (LSL) REPLACEMENT PROGRAM		
(choose one)	REDUCED – ANNUAL				DEMONSTRATION		
Please report results	s that are ND or le	ess than (<) the laborator	v's reported detect	tion limit (M	DI) as zero Results at	elow. Repeat for copper results. or above the laboratory's detection d as 0.0025 mg/L for lead or 0.025	
Step 2: Take the ave	erage of the 4 th ar	nd 5 th highest sample res	ults. This is your 9	90 th percent	le sample value.		
Step 3: Compare the have an exceedance	e 90th percentile and are required	value against the corresp t to contact MassDEP as	oonding action leve s soon as possible	el. If the 90t for informa	h percentile value is hig tion on compliance acti		
Note: If you collected Remember, within 30	d more than 5 sar 0 days of receipt,	nples you must use the you must send individua	90 th Percentile Cor al results to the per	mpliance Re rsons serve	eport form for more than d at each sampled loca	n 5 samples (Form LCR-D). tion as per 310 CMR 22.06B(6)(c).	
	LEAD RESUL	TS (mg/L)				SULTS (mg/L)	
#	All results for sa	mpling period		#	All results for	or sampling period	
1*	.0	010		1*	.002		
2	.0	010		2	.002		
3	.0	010		3	.018		
4	.0010			4	.026		
5	.0	010		5	.065		
	(Value	of 4th highest result					
			2	n highest re	esult) = 90 th Percen	tile Value	
.001		Compared to 0.01	2 5 mg/L		.046	tile Value Compared to <u>1.3 mg/L</u>	
(Lead 90 th percent	ile value)		2 5 mg/L				
(Lead 90 th percent II. CERTIFICATION Check and comp you are a commu accordance with	^{ile value)} N: olete the corre unity system y 310 CMR 22.	Compared to <u>0.01</u> (The lead action le ct statement for lea you must comply with 16A(4)(i)6.	2 5 mg/L vel) d as determine th the Consume	(Copper 90	.046 th percentile value) above results. If vo	Compared to <u>1.3 mg/L</u>	
(Lead 90 th percent II. CERTIFICATION Check and comp you are a commu accordance with ⊠ My sys	ille value) N: Jete the corre Unity system y 310 CMR 22. Stem was at or	Compared to <u>0.01</u> (The lead action le ct statement for lea you must comply with 16A(4)(i)6. below the lead action	2 5 mg/L vel) d as determine th the Consume n level.	(Copper 90 ed by the er Confid	.046 th percentile value) above results. If you ence Rule (CCR) r	Compared to <u>1.3 mg/L</u> (The copper action level) ou have an exceedance and eporting requirements in	
(Lead 90 th percent II. CERTIFICATION Check and comp you are a commu accordance with ⊠ My sys	ille value) N: Jete the corre Unity system y 310 CMR 22. Stem was at or	Compared to <u>0.01</u> (The lead action le ct statement for lea you must comply with 16A(4)(i)6.	2 5 mg/L vel) d as determine th the Consume n level. and	(Copper 90 ed by the er Confid sam	.046 th percentile value) above results. If you ence Rule (CCR) r	Compared to <u>1.3 mg/L</u> (The copper action level)	
(Lead 90 th percent II. CERTIFICATION Check and comp you are a commu accordance with ⊠ My sys □ My sys Check and comp and you are a co accordance with	ille value) N: Delete the corre unity system y 310 CMR 22. Stem was at or Stem exceeded Delete the corre mmunity syst 310 CMR 22.	Compared to 0.019 (The lead action le ct statement for lea you must comply with 16A(4)(i)6. below the lead action the lead action level ct statement for copper em you must complet	2 5 mg/L vel) d as determine th the Consume th the Consume and (Insert # o oper as determine y with the Cons	(Copper 90 ed by the er Confid sam of samples) ined from	.046 th percentile value) above results. If yc ence Rule (CCR) r pling sites exceeded	Compared to <u>1.3 mg/L</u> (The copper action level) ou have an exceedance and eporting requirements in	
(Lead 90 th percent II. CERTIFICATION Check and comp you are a commu accordance with ⊠ My sys Check and comp and you are a co accordance with ⊠ My syst	ille value) N: Dete the corre unity system y 310 CMR 22. stem was at or stem exceeded Dete the corre mmunity syst 310 CMR 22. tem was at or I	Compared to <u>0.01</u> (The lead action le ct statement for lea you must comply with 16A(4)(i)6. below the lead action the lead action level ct statement for copper myou must comple 16A(4)(i)6. below the copper action	2 5 mg/L vel) d as determine th the Consume th the Consume n level. and (Insert # o oper as determine y with the Consume on level.	(Copper 90 ed by the er Confid sam of samples) ined from sumer Co	.046 " ^h percentile value) above results. If your ence Rule (CCR) r pling sites exceeded the above results. onfidence Rule (CC	Compared to <u>1.3 mg/L</u> (The copper action level) Ou have an exceedance and eporting requirements in If the lead action level. If you have an exceedance CR) reporting requirements in	
(Lead 90 th percent II. CERTIFICATION Check and comp you are a commu accordance with ⊠ My sys Check and comp and you are a co accordance with ⊠ My syst	ille value) N: Dete the corre unity system y 310 CMR 22. stem was at or stem exceeded Dete the corre mmunity syst 310 CMR 22. tem was at or I	Compared to <u>0.011</u> (The lead action le ct statement for lea rou must comply with 16A(4)(i)6. below the lead action the lead action level ct statement for cop em you must compl 16A(4)(i)6.	2 5 mg/L vel) d as determine th the Consume th the Consume (Insert # o opper as determine y with the Cons on level. el and	(Copper 90 ed by the er Confid sam of samples) ined from sumer Co	.046 " ^h percentile value) above results. If your ence Rule (CCR) r pling sites exceeded the above results. onfidence Rule (CC	Compared to <u>1.3 mg/L</u> (The copper action level) ou have an exceedance and eporting requirements in I the lead action level.	
(Lead 90 th percent II. CERTIFICATION Check and comp you are a commu accordance with ⊠ My sys Check and comp and you are a co accordance with ⊠ My syst □ My syst My signature below in procedures used com	ille value) N: Delete the corre unity system y 310 CMR 22. stem was at or stem exceeded Delete the corre mmunity syst 310 CMR 22. tem was at or I tem exceeded Indicates that all s mply with 310 CM	Compared to 0.019 (The lead action le ct statement for lea you must comply with 16A(4)(i)6. below the lead action the lead action level ct statement for copper myou must comple 16A(4)(i)6. below the copper action the copper action level	2 5 mg/L vel) d as determine th the Consume th the Consume a level. and (Insert # o oper as determine y with the Consume on level. el and (Insert # oort have been pre der penalty of law	(Copper 90 ed by the er Confid sam of samples) ined from sumer Co sam of samples) eviously app	.046 th percentile value) above results. If your ence Rule (CCR) r pling sites exceeded the above results. pnfidence Rule (CCC) pling sites exceeded pling sites exceeded	Compared to <u>1.3 mg/L</u> (The copper action level) Ou have an exceedance and eporting requirements in If the lead action level. If you have an exceedance CR) reporting requirements in	
(Lead 90 th percent II. CERTIFICATION Check and comp you are a commu accordance with ⊠ My sys Check and comp and you are a co accordance with ⊠ My syst □ My syst My signature below in procedures used com- contained herein is tr	ille value) N: Dete the corre unity system y 310 CMR 22. stem was at or stem exceeded Dete the corre mmunity syst 310 CMR 22. tem was at or I tem exceeded Indicates that all s mply with 310 CM rue, accurate and	Compared to 0.019 (The lead action le ct statement for lea rou must comply with 16A(4)(i)6. below the lead action the lead action level ct statement for copper myou must comple 16A(4)(i)6. below the copper action the copper action level sampling sites on this rep R 22.06B(7). Lectify un	2 5 mg/L vel) d as determine th the Consume th the Consume a level. and (Insert # o oper as determine y with the Consume on level. el and (Insert # oort have been pre der penalty of law	(Copper 90 ed by the er Confid sam of samples) ined from sumer Co sam of samples) eviously app	.046 th percentile value) above results. If your ence Rule (CCR) r pling sites exceeded the above results. pnfidence Rule (CCC) pling sites exceeded pling sites exceeded	Compared to <u>1.3 mg/L</u> (The copper action level) Ou have an exceedance and eporting requirements in If the lead action level. If you have an exceedance CR) reporting requirements in If the copper action level.	
(Lead 90 th percent II. CERTIFICATION Check and comp you are a commu accordance with ⊠ My sys □ My sys Check and comp and you are a co accordance with ⊠ My syst □ My syst My signature below in procedures used com contained herein is tr Opera	ille value) N: Dete the corre Unity system y 310 CMR 22. Stem was at or Stem exceeded Dete the corre mmunity syst 310 CMR 22. tem was at or l tem exceeded Indicates that all s inply with 310 CM rue, accurate and tor	Compared to 0.019 (The lead action le ct statement for lea you must comply with 16A(4)(i)6. below the lead action the lead action level ct statement for copper em you must complet 16A(4)(i)6. below the copper action the copper action level sampling sites on this rep R 22.06B(7). I certify un complete to the best of	2 5 mg/L vel) d as determine th the Consume and (Insert # o oper as determine by with the Cons on level. el and (Insert # port have been pre der penalty of law my knowledge and	(Copper 90 ed by the er Confid sam of samples) ined from sumer Co sam of samples) eviously app	.046 th percentile value) above results. If your ence Rule (CCR) r pling sites exceeded the above results. pnfidence Rule (CCC) pling sites exceeded pling sites exceeded	Compared to <u>1.3 mg/L</u> (The copper action level) Ou have an exceedance and eporting requirements in If the lead action level. If you have an exceedance CR) reporting requirements in If the copper action level.	
(Lead 90 th percent II. CERTIFICATION Check and comp you are a commu accordance with ⊠ My sys Check and comp and you are a co accordance with ⊠ My syst □ My syst My signature below in procedures used com- contained herein is tr	ille value) N: Dete the corre Unity system y 310 CMR 22. Stem was at or Stem exceeded Dete the corre mmunity syst 310 CMR 22. tem was at or l tem exceeded Indicates that all s inply with 310 CM rue, accurate and tor	Compared to 0.019 (The lead action le ct statement for lea you must comply with 16A(4)(i)6. below the lead action the lead action level ct statement for copper em you must complet 16A(4)(i)6. below the copper action the copper action level sampling sites on this rep R 22.06B(7). I certify un complete to the best of	2 5 mg/L vel) d as determine th the Consume and (Insert # o oper as determine y with the Cons on level. el and (Insert # port have been pre der penalty of law my knowledge and	(Copper 90 ed by the er Confid sam of samples) ined from sumer Co sam of samples) eviously app	.046 " ^h percentile value) above results. If your ence Rule (CCR) r pling sites exceeded the above results. onfidence Rule (CCC) pling sites exceeded roved in writing by the last e person authorized to	Compared to <u>1.3 mg/L</u> (The copper action level) Ou have an exceedance and eporting requirements in If the lead action level. If you have an exceedance CR) reporting requirements in If the copper action level.	
(Lead 90 th percent II. CERTIFICATION Check and comp you are a commu accordance with ⊠ My sys □ My sys Check and comp and you are a co accordance with ⊠ My syst □ My syst My signature below in procedures used com contained herein is tr Opera	ile value) N: olete the corre unity system y 310 CMR 22. stem was at or stem exceeded olete the corre mmunity syst 310 CMR 22. tem was at or I tem exceeded indicates that all s inply with 310 CM we, accurate and tor	Compared to 0.019 (The lead action le ct statement for lea you must comply with 16A(4)(i)6. below the lead action the lead action level ct statement for copper myou must complet 16A(4)(i)6. below the copper action the copper action level sampling sites on this rep R 22.06B(7). I certify un complete to the best of	2 5 mg/L vel) d as determine th the Consume and (Insert # o oper as determine by with the Cons on level. el and (Insert # bort have been preder penalty of law my knowledge and Signature of PWS or 0	(Copper 90 ed by the er Confid sam of samples) ined from sumer Co sam of samples) eviously app that I am th d belief.	.046 th percentile value) above results. If you ence Rule (CCR) r pling sites exceeded the above results. pridence Rule (CCC) pling sites exceeded pling sites exceeded roved in writing by the level of the second secon	Compared to <u>1.3 mg/L</u> (The copper action level) Ou have an exceedance and eporting requirements in If the lead action level. If you have an exceedance CR) reporting requirements in If the copper action level. DEP, and both the sites and sampling fill out this form and the information	

NOTICE OF TAP WATER RESULTS LEAD AND COPPER COMPLIANCE SAMPLING PROGRAM

PWS Name: Gill Elementary School PWS ID: 1106004

Date: 6/18/2019

Dear Consumer:

As you may know, Alphabet Soup Child Care is also a public water system (PWS) responsible for providing drinking water that meets state and federal standards. This notice reports the lead and copper results from the samples collected at this facility on 5/14/2019 samples collected #5].

[Select between the two following options. Check the box that applies and delete the option not selected:]

A total of 5# were taken and the following table provides information on the tap location and the water sample result represented in milligrams per liter (mg/l):

В	uilding Sampling Location	Lead (mg/l)	This result is above the Lead Action Level	Copper (mg/l)	This result is above the Copper Action Level
1.	Teachers Bathroom	.0010		.018	
2.	Room 10 Sink	.0010		.026	
3.	Room 9 Sink	.0010		.065	
4.	Room 5 Sink	.0010		.002	
5.	Kitchen Sink	.0010		.002	

A total of 5# samples were taken and compliance is based on the 90th percentile for all of these samples. See the attached analytical report for the lead and copper results for each location that was sampled. The 90th percentile lead and copper levels in your water system are as follows:

LEAD: .0010 milligrams per liter (mg/l). This result is above/ below the Lead Action Level of 0.015 mg/l. COPPER: .046 milligrams per liter (mg/l). This result is above/ below the Copper Action Level of 1.3 mg/l.

What Does This Mean?

The United States Environmental Protection Agency (EPA) and the Massachusetts Department of Environmental Protection (MassDEP) set the Lead Action Level¹ for lead in drinking water at 0.015 mg/l (or parts per million) and the Copper Action Level at 1.3 mg/l. Because lead may pose serious health risks, the EPA and MassDEP also set a Maximum Contaminant Level Goal (MCLG)² for lead of zero. The MCLG for copper is 1.3 mg/l.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our public water system is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. More information on lead in drinking water and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at: <u>http://www.epa.gov/safewater/lead</u>.

We recommend the following tips to keep any potential lead and copper out of the water you drink:

- Most importantly Flushing your water is the simplest way to reduce exposure to lead. When your water has been sitting for several hours, flush the tap until the water feels cold before use.
- Never use hot water from the faucet for drinking or cooking especially when making baby formula.
- Never boil water to remove lead or copper. Boiling water for an extended time may make the lead or copper more concentrated.

¹ The Action Level is the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

² The Maximum Contaminant Level Goal (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.