

BALES ENERGY ASSOCIATES

Date: April 22, 2014
DRAFT REVISION INCLUDING HEAT PUMP ANALYSIS

FOR SLATE LIBRARY

332 Main Road Gill, MA 01354

Completed By:

Bales Energy Associates

50 Miles Street
Greenfield, MA 01301
www.balesenergy.com
info@balesenergy.com
413-863-5020
Consulting Energy Engineer:
Bart Bales, PE, MSME

TABLE OF CONTENTS

Introduction	4
Executive Summary	4
Energy Conservation Opportunities Evaluated	4
Enclosure Improvements	4
Heating System Observations & Recommendations	5
Option 1: Replace the existing oil-fired atmospheric furnace with a seale propane-fired, condensing furnace	·
Option 2: Installation of a In-Duct Split System Air-to-Air VRF Heat Pum	<mark>p (Revised).</mark> 5
Option 3: Replace Existing System to Water-to-Water Ground-Source Head System and an in duct transfer coil.	-
Domestic Hot Water System Observations & Recommendations	5
Basement Moisture Observations and Considerations	5
Executive Summary Chart	7
Existing Conditions	8
Facility Description	8
Utility Energy Use	9
Heating Ventilating & Air Conditioning Systems	10
Hot Air Furnace	10
Heating Distribution Systems	10
Domestic Hot Water Heating Systems	10
Lighting Systems	10
Building Enclosure	10
Roof & Attic	10
First Floor Ceiling	11

ΑP	PENDICES	12
	Existing Furnace	13
	Propane-Fired Condensing Furnace Information	14
	Tognarelli Heating Proposal	16
	Option#1: Propane-Fired Condensing Furnace	19
	Option#2: Installation of Ducted Split System Air-to-Air VRF Heat Pump	
	(Revised measure)	<mark>20</mark>
	Option#3: Replace Existing System to Water-to-Water Ground-Source He	e <mark>at</mark>
	Pump System and an In-Duct Transfer Coil	22
	Insulation Quote Information	26
	Calculations	27
	Heating Savings with Propane-Fired Furnace Chart	28
	ECM #2A Chart	29
	ECM #2B Chart	2
	ECM #2C Chart	30
	Existing Conditions Heat Balance Charts	31
	Heat Loads After ECM #2A Charts	34
	Heat Loads After ECM #2B Charts	36
	Heat Loads After ECM #2C Charts	20

Introduction

Bales Energy Associates, an energy efficiency engineering firm, was contracted to provide an ASHRAE Level 2 energy audit for the Slate Library located at 332 Main Road in Gill, Massachusetts.

Bart Bales, PE, MSME, senior engineer at Bales Energy Associates, visited the site, reviewed energy usage & billing information, examined relevant equipment and systems, and developed energy analyses and recommendations with regard to the building's energy related systems.

Subsequent to the completion of this report and at the request of the Gill Energy Committee, Bales Energy Associates agreed to work in conjunction with Richard Baker, an IGSHPA certified heat pump specialist, to provide a preliminary evaluation of ground and air-source heat pump to this building. Cost estimates were provided by Mr. Baker and at the time of the provision of this draft study have not been independently evaluated by Bales Energy Associates. Results of these added heat pump analyses are included in the appendices.

Executive Summary

Energy Conservation Opportunities Being Evaluated

Bales Energy Associates was pleased to provide this Energy Study for the Slate Library.

It is noted that, if the roof and walls of the building can be insulated, there is an opportunity to potentially bring the upper balcony of the library back into use and to enhance the beauty and utility of the library.

Bales Energy Associates' study provides the costs and energy and dollar savings for a number of potential improvements. It will be up to the Town, the library committee, and the historic commission to determine which of the measures evaluated would be acceptable changes to the building. Bales Energy Associates will be happy to participate as a technical resource in a meeting to discuss the options.

Bales Energy Associates has approached the Slate Library in terms of the whole system. Improvements in various systems have interactive impacts with other systems. Key conclusions are the following:

- 1. **Enclosure Improvements** can substantially reduce the building's heat loss characteristics. Recommendations include:
 - a. **Insulate the small attic area at the peak of the building to an R-value of R60.** Add sufficient cellulose insulation to achieve the desired attic floor assembly R-value. Air seal bypasses and penetrations in the attic.
 - b. Consider insulating the inside of the concrete block walls, and if the upper loft area of the library is to be re-opened to use, insulate the angled portions of the ceiling (now above the existing drop ceiling) with two inches of foam insulation (R14 total).
 - c. As part of this installation, the existing tin on the walls will be removed and two inch furring strips will be installed to allow the installation of sheetrock over the foam. (Depending upon the preferences of the Town, the tin may be left removed or re-installed after the walls have been insulated.)

- d. Extend the proposed wall insulation to include the basement walls.
- e. A possible alternative would be to insulate the outside of the building with foam insulation and clad with clapboards, hardy plank, or other cladding material. This would actually have better insulating and moisture management characteristics. However, the consultant was led to believe that historical consideration with regard to the library might make an exterior insulation approach unacceptable.
- f. For long-term capital improvement, consider replacing the building's windows and framing to renew these important architectural features of the building. This will also reduce air leakage and conduction heat losses and improve occupant comfort.

2. Heating Systems Observations and Recommendations

- a. Accomplishing the described envelope improvements will substantially reduce the peak heating load and the annual energy use for heating the building.
- b. Option 1: Replace the existing oil-fired atmospheric furnace with a sealed combustion, propane-fired, condensing furnace. Install a town-owned propane storage tank.
- c. If the furnace is to continue to be used and if the basement area is to be used for storage and not as a regularly occupied space, insulate heating system ductwork in the basement. This will reduce heat losses to the basement.
- d. Install an improved microprocessor-based temperature control and temperature sensors. Install a new programmable microprocessor to provide scheduling of occupied and unoccupied periods.
- e. Option 2: Installation of a In-Duct Split System Air-to-Air VRF Heat Pump. A revised measure for the air-source heat pump option has been provided in this report.
- f. Option 3: Replace Existing System to Water-to-Water Ground-Source Heat Pump System and an in duct transfer coil.

The revised added Heat Pump options are included in the appendices.

3. Domestic Hot Water System Observations and Recommendations Observations:

- a. Domestic hot water use is very limited in the building; there is one lavatory sink in the
- b. The existing 30 gallon electric water heater is oversized to current needs.

Recommendations:

To reduce stand-by heat losses, **install a 2.5-gallon electric mini-tank adjacent to the sink in the basement lavatory.**

4. Basement Moisture Observations and Considerations

a. The basement of the Slate Library accumulates water in the center of the basement floor. To maintain healthy conditions for occupants and to render the basement space more useful as storage, eliminating this basement dampness issue should be accomplished.

Background:

Until the leaky covered entrance for the exterior basement door was removed and replaced with a new watertight bulkhead door, water leaked into the below grade door entry way and seeped under door. It is the consultant's understanding that with the new bulkhead door in place, such seepage no longer occurs under the door.

Water staining was also noted around the basement window nearest the basement exterior door. It is the consultant's belief during heavy rains water from the yard behind the building collects next to the basement window and seeps into the basement and then pools at the low spot in the middle of the basement floor.

Remediation Possibilities

Resolving this basement moisture issues is well beyond the scope of the current project. However, the consultant provides the following observations and thoughts for the Town's consideration.

By making limited changes to the landscape behind the building, it may be possible to eliminate this seeping effect. Provision of a proper recessed and graveled bottomed cellar window feature may help remediate this situation. Making minor grading changes so that the yard slopes away from the building (rather than toward the building as it does now. A small overhang located immediately above the basement windows could also aid in directing water or snow away from the area next to the basement window is also an option.

If employing of these simple, low-cost approaches is successful, then more expensive remediation approaches may not be necessary.

If these approaches are not effective in eliminating the pooling of water at the center of the basement floor, then sub-surface water may be contributing to the moisture problem. Resolving such issues would require added professional evaluation.

The costs, savings, and economic payback for these energy conservation measures will be presented in an Executive Summary Chart. The values shown in the Executive Summary Table will represent the savings with measures taken in the order of economic feasibility shown.

The calculations supporting each measure will be included in the appendices. Information related to the added heat pump measures is included in the appendices.

		ľ	xecutiv	Executive Summary Chart	ry Chart	Ö	Propane						
						\$2.98	\$2.15						
						\$/Gallon	\$/Gallon						
			Available	Total	Incremental	Oil	Propane	Amnal	Total	Incremental	Incremental Total Payback Incremental	Incremental	
ECM	, ,	Incremental	Utility	Cost after	Cost after	Savings	Savings	Savings	Payback	Payback	Payback after Payback after	Payback after	Life
# Energy Conservation Measures	Cost	Cost(\$)	Rebates (\$)	Rebates (\$) Rebate (\$)	Rebate (\$)	(Gallons/yr)	(Gallons/yr) (Gallons/yr)	(\$/yr)	(yrs)	(yrs)	Rebates (yrs) Rebates (yrs)	Rebates (yrs)	Years
ECM1 Install Propane-Fired Furnace	\$13,490	\$4,990	0	\$13,490	\$4,990	545	-617	\$296	45.6	16.9	45.6	16.9	20+
								-					
ECM2 Option A: Insulate & Air-Seal the Top Attic	\$1,256	\$1,256	0	\$1,256	\$1,256		20	\$42	29.9	29.9	29.9	29.9	30+
ECM2 Option B: Insulate Top Attic & Sloping Roof	\$6,794	\$6,794	0	\$6,794	\$6,794		129	\$277	24.5	24.5	24.5	24.5	30+
ECM2 Option C: Insulate Walls, Top Attic & Sloping Roof \$12,187		\$12,187	0	\$12,187	\$12,187		167	\$359	33.9	33.9	33.9	33.9	30+
Totals for ECM1 & ECM2A \$14,	\$14,746	\$6,246	0\$	\$14,746	\$6,246	545	-597	\$338	43.7	18.5	43.7	18.5	
Totals for ECM1 & ECM2B \$20,	284	\$11,784	0\$	\$20,284	\$11,784	545	-488	\$573	35.4	20.6	35.4	20.6	
Totals for ECM1 & ECM2C \$25,	<i>LL</i> 9	\$17,177	0\$	\$25,677	\$17,177	545	-450	\$655	39.2	26.2	36.5	26.2	

Existing Conditions

Facility Description

The Slate Library is a small concrete block, sloped-roofed building located at 325 Main Road Gill, Massachusetts. Currently, the first floor space is the space actively used for the library's stacks and for library activities. It is mostly an open plan space with a large room and a connected children's room. There are no doors between the two rooms. There is a door separating the small room at the foot of the balcony stairs.

The building was originally designed with an attractive high-arched ceiling with exposed wooden beams and a usable balcony area. This arched ceiling is no longer visible because a drop ceiling was installed at approximately the same level as the ceiling under the balcony. The balcony area is now used for storage.

The basement was originally designed to be a conditioned space but is not much used, even for storage, due to issues of water collecting on the concrete basement floor. The only lavatory in the building is located in the southeast corner of the basement.

The library is open on Tuesdays 2-6 pm, Wednesdays 3-7 pm, Thursdays 2-8 pm, and Saturdays 10 am - 2 pm. It is also open on Fridays for a 10 am story hour. The space is also used occasionally for town-related meetings and for special events.

Utility Energy Use

Utility data was collected and is tabulated below. Western Massachusetts Electric Company provides electricity. For heating, the Slate Library uses #2 fuel oil. (Note: WMECO and its parent company Northeast Utilities, recently merged with NSTAR. As a result, changes in procedures and personnel in charge of related utility programs are in transition.)

Jul 2012-June 2013	3				
Building Name	Slate Library				
Owner	Town Of Gill, I	MA			
Account #					
	Electricity	Electricity	Oil	Oil	Energy \$
Month	KWH	Total \$	Gallons	\$	Totals
July 1, 2012	68	\$37		T	\$37
Aug	54	\$35			\$35
Sept	90	\$56	42.9	\$128	\$184
Oct	25	\$15	12.0	\$0	\$15
Nov	80	\$38		\$0	\$38
Dec	238	\$70	104.1	\$310	\$380
January 1, 2013	70	\$20	210.0	\$625	\$645
Feb	184	\$49	76.3	\$227	\$276
Mar	125	\$43		\$0	\$43
Apr	115	\$42	111.3	\$331	\$373
May	133	\$60			\$60
Jun	45	\$18			\$18
Annual (Units)	1,227	\$482	544.6	\$1,622	\$2,104
Heating Season (Units)	837	\$275	544.6	\$1,494	\$1,770
Annual (\$/Unit)		\$0.393		\$2.978	
Heating Season (\$/Unit)		\$0.329		\$2.978	
	Electricity		Oil	Energy Use	
	MBtu		MBtu	Totals (Mbtu)	
Annual (Mbtu)	4,187		75,536.0	79,723	Energy \$
Heating Season (Mbtu)	2,856		75,536.0	78,392	Totals
\$/Energy Unit				Totals (Mbtu/sf)	(\$/sf)
Annual (Mbtu/sf)	1.4		25.2	26.6	\$0.70
Heating Season (Mbtu/sf)	1.0		25.2	26.2	\$0.59
Htng Season \$/Energy Unit					
Building Name	Slate Library			Heated SF	2,994

Prescriptive and custom utility incentives may be available for some of the measures described. When the report's contents are accepted by the client, the report may be presented to the utilities for review and determination of levels of custom incentives the utilities will offer, if any. Western Massachusetts Electric Company contacts are: Lynn Ditullio (ditullb@nu.com) and Robert Dvorchik (dvorcrs@nu.com).

Heating, Ventilating & Air Conditioning Systems

Hot Air Furnace

The building is served by an atmospheric, oil-fired, non-condensing hot air furnace (Williamson WLBO-105) installed in 1999. This single-firing rate boiler has an output heating capacity of 105,000 Btu/hr. The boiler has a measured combustion efficiency of 82%.

The design heat load for the building is approximately 54,000 Btu/hr.

Bales Energy Associates recommends replacement of the existing oil-fired, atmospheric furnace with a sealed combustion, propane-fired, condensing furnace and the installation of a town-owned propane storage tank.

Given the heat load, the limited use of the library, the level of use of the building, and other factors, installation of an air-source heat pump does not seem justified in terms of energy cost savings.

In an update to this report, the Energy Committee contracted for added evaluation of air and ground-source measures in this report. They are included in the Appendix.

Heating Distribution Systems

The building is a ducted, forced hot air heating system.

Domestic Hot Water Heating Systems

Hot water is provided by a small well-insulated electric hot water heater located in lavatory in the basement. Water usage is minimal in the building as water uses are limited to a lavatory sink.

Lighting Systems

Most spaces in the building are lighted with four foot fluorescent fixtures equipped with 32 watt, T-8 lamps and electronic ballasts.

Building Enclosure

The finished basement, first, and second floors of the Slate Library comprise approximately 2,210 heated square feet of floor area. The building includes a fireplace which is no longer used. Occupants should assure that the fireplace damper is maintained in the closed position in the heating season. By preventing heated room air from being drawn out of the heated space and up the chimney by thermal buoyancy effects, infiltration of cold outside replacement air into the heated space will be reduced.

Roof and Attic

The Slate Library has a small inaccessible attic.

The sloped sections of the second story ceiling and the attic area above the center flat section of ceiling are not insulated. Ceilings are covered with decorative tin.

Recommendation for the Attic and Sloped Ceiling Areas:

Bales Energy Associates recommends insulating the attic with cellulose to an R-value of R60.

Bales Energy Associates recommends insulating the sloped section of the ceiling with 3 inches of foam insulation.

(Note: The tin will need to be removed for the insulating of the sloped sections. Given the unique nature and potential historical considerations of the tin ceiling, costs related to tin removal and handling are not included in this report.)

First Floor Ceiling:

Currently there is a t-bar drop ceiling installed to create a lower ceiling for the main reception area. Fiberglass batt insulation has been installed on top of the drop ceiling in an attempt to reduce heat losses to the less heated second floor area.

As already noted in the facility description section, the main circulation room of the library was designed with a high-ceiling with attractive wooden arches. The second floor was originally a balcony overlooking the main reception area. This balcony is located above the current children's room, the entry way and the side room.

Library staff and library committee members have indicated an interest in the potential restoration of the library circulation room to its original high-ceiling configuration. Insulating the upper ceilings will help mitigate energy use impacts of such a restoration.

To further reduce building energy losses, insulation of the first and second floor concrete block walls of the building with 2 inches of foam insulation on the inside of the building has also been evaluated in this report. (At the request of the library committee, exterior insulation was not considered due to the historical nature of the building exterior.)

Installation of rim joist insulation in the basement was included in the added costs for wall insulation. Air sealing of the rim joist was also included.

It is assumed that the foam will be covered with sheetrock after insulation. Studs for mounting of the sheetrock will also need to be installed. (Note: Rough costs were carried for the carpentry required for the work. These costs will vary depending upon the exact interior design preferences of the Town. Tin removal and/or reinstallation costs were not included.)

The enclosure improvements were presented as three options:

- A. Insulation and air sealing of flat attic only
- B. Insulation of sloped ceiling and flat attic
- C. Insulation of walls, rim joist, sloped ceiling and flat attic

APPENDICES

EXISTING FURNACE

Williamson Furnace of Same Type as Existing Furnace at Slate Library

PROPANE-FIRED CONDENSING FURNACE

York Hot Air Furnace

Gas Furnace TM9V LX Series TM9V060 B12MP11

Details for LX Series TM9V060 B12MP11:

96% 2 Stage Variable Speed Multi-Position Gas Furnace

These compact units employ induced combustion, reliable hot surface ignition and high heat transfer aluminized tubular heat exchangers. The units are factory shipped for installation in upflow or horizontal applications and may be converted for downflow applications.

These furnaces are designed for residential installation in a basement, closet, alcove, attic, recreation room or garage and are also ideal for commercial applications. All units are factory assembled, wired and tested to assure safe dependable and economical installation and operation.

These units are Category IV listed and may be vented either through side wall or roof applications using approved plastic combustion air and venr piping.

ENERGY STUDY FOR SLATE LIBRARY

Technical details for LX Series TM9V060 B12MP11:

Low Fire Input	39,000 BH
High Fire Input	60,000 BH
Low Fire Output	37,000
High Fire Output	58,000 BH
Efficiency (AFUE)	96 %
Air Temp. Rise Max Input	35-65
Air Temp. Rise Min Input	35-65
Total Unit	9 AMPS
Blower	0.5 HP
Blower Wheel Size	11 x 8
Max Over-Current Protect	15
Cabinet Size	В
Cabinet Dimensions	17.5 X 16.375 X 13.25 INCHES

85 Pierce Street - Greenfield, MA 01301

PROPOSAL

NAME / ADDRESS	
Bales EnergyAssociates	
Bart Bales PE,MSME	
0 Miles St	
Greenfied, MA 01301	

DESCRIPTION	QTY	TOTAL
Job Location: Gill Library, Gill	1	18,480.00
Price to install one Mitsubishi (Model#: PUZ-HA36NHA) twinned system wit two 18,000 BTU heads. Price is based on prevailing wage and includes all parts and labor.		
Price to install one York (Model#: TM9V060) high efficient two stage variables speed propane furnace. Price is based on prevailing wage and includes all parts and labor.		11,390.00
Thank you for your time.	TOTAL includes sales tax	\$29,870.00

INSULATION QUOTE INFORMATION Slate Library

	Location	Measure	Depth	R-Value	# / SF	Cost
1	Walls	Spray Foam Closed Cell	2	14	1,396	\$3,490
2	Attic Slope	Spray Foam Closed Cell	3	21	868	\$3,038
3	Attic Floor	Cellulose Open Blow	11	41	388	\$620
4	Attic Floor	Cellulose OB to R60 Adder	6	22	388	\$136
5	Attic	Air Sealing	0	N/A	6	\$450
6	Basement Rim & Band	Spray Foam Closed Cell	2	14	124	\$403
	Total					\$8,137

^{*} This assumes that the tin is removed and the assemblies are framed-out to accommodate space for insulation. Ideally thermal bridging would be mitigated by leaving a space between the new framing and the old wall.

None of this pricing accounts for permitting costs. Large structures may also require a construction control affidavit from an Architect or Engineer.

Tom Rossmassler President & CEO **Energía, LLC** 242 Suffolk Street Holyoke, MA 01040 413.322.3111 x20 413.326.1860 cell

CALCULATIONS

Option#1: Propane-Fired Condensing Furnace

0.00	1		Slate Library		Propane	
Oil Rate (\$/gallon)			Gill, MA		\$/gallon	
\$2.98	Existing Condition:			New Condition:	\$2.15	
	Space Heating			Space Heating		
Equipment Type	Furnace			Furnace		
Boiler#	1			1		
Make	Williamson			York		
Model	WLRO-60			TM9VO60		
Туре	Non-Condensing			Condensing		
Heating Medium	Hot Air			Hot Air		
Control Mode	107			Two-Stage, Variable Speed		
Maximum Output Mbtu/Hr	105			60		
Steady State Eff	83%			92%		
Input Mbtu/Hr	127		AFTER	65		
Seasonal Eff	78%		AFUE	96%		
Percentage of Load	100%			100%		
Installed System Costs				Condensing Furnace		
Boiler	\$8,500	Propane-Fir	ed Condensing Furnace	\$11,390		
			Propane tank	\$2,100		
Totals	\$8,500			\$13,490		
Annual		Existing	New		Peak	Provide (
Building	Summary of	Oil	Propane		Space	1
Operating	Existing	Heating	Heating	Fuel Cost	Heating	Boilers @
Load	Building-Related	Usage	Usage	\$	Load	100%
	Heat Loads	Gallons	Gallons	Ψ		of design L
(MMbtu/year)			Gallons	¢1 (22	(Mbtu/hr)	or design L
58,918	Existing Oil Use	545	(18	\$1,622	54	
58,918	New Propane Use		617	\$1,326		
Fuel Energy Before	75,536					
Fuel Energy After						
Fuel Energy saved			Savings \$	\$296		
r uci Energy saveu	14,103		Savings o	∳ 27U		
suming Existing Boiler						
yback Calculation:						
		Cost	Savings	Payback		
ll Equipment Cost Basis:		\$13,490	\$296	45.6		
		<u></u>				
cremental Equipment Cost B		\$4,990	\$296	16.9		

Option#2: Installation of Ducted Split System Air-to-Air VRF Heat Pump (Revised measure)

		•	u illeasi	•	~	
	Space	Heating Savings with		r-Source Heat P		,
			Slate Library		Electricity	
Oil Rate (\$/gallon)	1		Gill, MA		\$/KWH	
\$2.98	Existing Condition:			New Condition:	\$0.144	
Equipment Type	Space Heating Boiler			Air-Source Heat Pump		
Boiler #	1			1 1		
Make	Williamson			Daikin Skyair		
Model	WLRO-60	Supplemen	tal Electric Coil (5KW)			
Туре	Non-Condensing			HSPF:8.8		
Heating Medium	Hot Air			Air-to Air		
Control Mode			Rating (tons)	3.9		
ximum Output Kbtu	105		,	47.0		
Steady State Eff	83%		Mean	230%		
Input Mbtu/Hr	127			20		
Seasonal Eff	78%			230%		
Percentage of Load	100%			100%		
stalled System Co		High-Performan	ce Heating System			
Boiler	\$8,500	Nine (9) Split-System Air-So				
	1 - 3 - 3	() a j = 2 j = 1 = 2 d	Integrating Controls			
			Subtotal	4	_	
			Contingency	\$1,627	_	
			Subtotal	\$17,897		
		System Configura	tion Contractor Oversight	\$1,790		
Totak	\$8,500		Total	\$19,687		
Annual		Existing	New		Peak	Provide (#)
Building	Summary of	Oil	Electricity		Space	1
Operating	Existing	Heating	Heating	Fuel Cost	Heating	Boilers @
Load	Building-Related	Usage	Usage	\$	Load	100%
	Heat Loads	Gallons	KWH	φ	100	
(MMbtu/year)			КИП	¢1 (22	(Mbtu/hr)	of design Load
58,918	Existing Oil Use	545	= =0.0	\$1,623	47	47
58,918	New Electricity Use		7,506	\$1,081		
		KWH				
Fuel Energy Before						
Fuel Energy After						
uel Energy saved	33,302		Savings \$	\$542		
Payback Calcul	lation:					
Symmetry Control		Cost	Savings	Payback	Incentive per Ton	
Full Fauinman	t Cost Rosis		- U		ancentive per 1011	
Full Equipmen		\$19,687	\$542	36.3		
	ermal Incentive (CEC/DOER)					
Utility Incentive	,	-\$313			\$80	
Full Equipmen	t Cost Basis after Incentive:	\$19,373	\$542	35.7		
	Ingremental Equipment Cost Posice		1			
Incremental E	quipment Cost Basis:	\$11,187	\$542	20.6		
	quipment Cost Basis:	\$11,187 \$0	\$542	20.6		
Renewable The	ermal Incentive (CEC/DOER)	\$0	\$542	20.6		
Renewable The Utility Incentive	ermal Incentive (CEC/DOER)	,	\$542 \$542	20.6		

Air Source Heat Pump Data for Slate Library

From Rich Baker ASHP Preliminary Report

Project: Gill Slate Library HVAC upgrades

Prepared: April 1, 2014

Prepared By: Richard Baker, IGSHPA 24526-0209

RE: ASHP Preliminary Report Gill Slate Library

System Loads

System loads or peak loads are calculated based on a variety of details for an individual facility, assumed occupancy levels, the number of appliances operating, the number of doors & windows, and the tightness of the construction all contribute to the amount of energy required to maintain the thermostat set points given the historical extreme weather conditions in your area.

1 kBtu/hr = 1,000 Btu/hr

Zone	Total Heating Load	Total Cooling Load	SHF
Zone 1	54.0 kBtu/hr		0.900
Total	54.0 kBtu/hr		

- 1. Peak Loads used here as provided by: Bart Bales, PE
- 2. This report is primarily concerned with heating load and associated operational costs therefore cooling load is not being considered at this point.

Equipment Schedule

Based on the provided loads and space configuration considerations, the preliminary ASHP equipment schedule for this system is as follows:

Zone	Equipment	QTY	Heat Capacity	Heat Capacity	Water Flow	Air Flow
			KBtu/hr	kBtu/hr	(GPM)	(CFM)
			(Low Stage)	(High Stage)		
Entire	Daikin SkyAir	1		47,000		1377/1165/988
Building						

 The installation of a 5kw duct mounted electric auxiliary heater is recommended to supplement this system for peak load requirements.

Rated System Efficiencies:

HSPF: 8.8

COP: 3.2 @ 43 FWB/47 FDB

Anticipated Cost to Install: \$ 15,000

Option 3: Replace Existing System to Water-to-Water Ground-Source Heat Pump System and an In-Duct Transfer Coil

	Space Heati	ng Savings with Wat	ter-toWater G	round-Source H	eat Pump Syste	m
			Slate Library		Electricity	
Oil Rate (\$/gallon)			Gill, MA		\$/KWH	
\$2.98	Existing Condition:			New Condition:	\$0.144	
	Space Heating			Ground-Source		
Equipment Type	Furnace			Heat Pump		
Furnace #	1			1		
Make	Williamson		In-Duct	Hydron		
Model	WLRO-60	0 1	Heat Pumps (1)	HWT026		
Type Heating Medium	Non-Condensing Hot Air	Supprementar	Electric Coil (5KW)	Peak/Back-up Water-to-Water		
Control Mode	Hot All		Rating (tons)	4.1		
ximum Output Mbtu	105		Rating (tons)	48.7	% Includes effect of	2
Steady State Eff	83%			352%	(90% by HP; 10% e	
Input Mbtu/Hr	127			14	(50% by 111, 10% c	l peak)
Seasonal Eff	78%			352%		
Percentage of Load				100%	(90% by HP; 10% e	electric at peak)
stalled System Co		High-Performance	Heating System			1 /
Furnace	\$8,500		-Water Heat Pumps			
1 11111111	\$0,000		(10) Fan-Coil Units			
			ling: Borefield with			
		<u> </u>	333 Foot Boreholes	¢25 500		
				\$35,500		
			Integrating Controls	•		
			Subtotal	\$36,770		
			Contingency	\$3,677		
			Subtotal	\$40,447		
		System Configuration	n Contractor Oversight	\$4,045		
Totals	\$8,500		Total	\$44,492		
Annual		Existing	New		Peak	Provide (#)
Building	Summary of	Oil	Electricity		Space	1
Operating	Existing	Heating	Heating	Fuel Cost	Heating	Heat pumps @
Load	Building-Related	Usage	Usage	\$	Load	90%
(MMbtu/year)	Heat Loads	Gallons	KWH	Ψ	(Mbtu/hr)	of design Load
			КИП	¢1 (22		
58,918	Existing Oil Use	545	4.004	\$1,623	49	44
58,918	New Electricity Use		4,904	\$706		
	70.710	KWH				
Fuel Energy Before						
Fuel Energy After						
uel Energy saved	42,180		Savings \$	\$917		
58,918						
		Cost	Savings	Payback	Incentive per Ton	
Full Equipmen	t Cost Basis:	\$44,492	\$917	48.5		
	rmal Incentive (CEC/DOER)	-\$8,117	T	-5.5	\$2,000	
Utility Incentive	-	\$0			Ψ2,000	
	-	•	6017	20.7		
r un Equipmen	t Cost Basis after Incentive:	\$36,375	\$917	39.7		
	quipment Cost Basis:	\$35,992	\$917	39.3		
Renewable The	rmal Incentive (CEC/DOER)	-\$8,117				
Utility Incentive	-	\$0				
	quipment Cost Basis:	\$27,875	\$917	30.4		
ancientium Et	Jaipinent Cost Dasis.	Ψ=1,0010	Ψ/1/	50.7		

Ground-Source Heat Pump Data for Slate Library

From Baker GSHP Preliminary Report

Project: Gill Slate Library HVAC upgrades

Prepared: March 13, 2014

Prepared By: Richard Baker, IGSHPA 24526-0209

RE: GSHP Preliminary Report Gill Slate Library

System Loads

System loads or peak loads are calculated based on a variety of details for an individual facility, assumed occupancy levels, the number of appliances operating, the number of doors & windows, and the tightness of the construction all contribute to the amount of energy required to maintain the thermostat set points given the historical extreme weather conditions in your area.

1 kBtu/hr = 1,000 Btu/hr

Zone	Total Heating Load	Total Cooling Load	SHF
Zone 1	54.0 kBtu/hr		0.900
Total	54.0 kBtu/hr		

- 3. Peak Loads used here as provided by: Bart Bales, PE
- 4. This report is primarily concerned with heating load and associated operational costs therefore cooling load is not being considered at this point.

Equipment Schedule

Based on the provided loads and space configuration considerations, the preliminary GSHP equipment schedule for this system is as follows:

Zone	Equipment	QTY	Heat Capacity KBtu/hr (Low Stage)	Heat Capacity kBtu/hr (High Stage)	Water Flow (GPM)	Air Flow (CFM)
Entire Building	Hydron Module – HXT060	1	38.80	48.70	15.0	2,150

- 1. All capacities shown are total
- 2. For water to water equipment, source and load water flows are assumed equal.
- 3. Capacities are adjusted for 30F EWT and Glycol protection to 15F with EAT 68F
- 4. When equipment allows continuous fan operation is recommended
- 5. Avoid using dramatic night time set back
- 6. Installed GSHP COP 3.55 High Capacity and 3.98 Low Capacity

GSHP Selection

Manufacturer: **Hydron Module**Model: **HXT060**

Heat Pump Type: Water to Water Capacity: Dual

Installation	\$35,500.	
Cost		

Ground Heat Exchange Summary

Grout is used inside of all bores in order to protect the deep earth environment from surface contaminants and to provide a more effective contact surface with GHEX piping that optimizes heat transfer between the fluid pumped through your GSHP and the earth. Deep Earth (below 20ft) temperature is a function of the average annual air temperature in your region and remains relatively constant regardless of season.

Deep Earth Temp (Tg) 52.0 F

Formation T.C.	1.30 Btu/hr ft F
Grout T.C.	1.00 Btu/hr ft F

EWTmin 30.0F **EWTmax** 90.0F 6.00 in **Bore Diameter** Pipe Diameter 1.25 in Bores in Series 1 **Layout Rows** 1 Bores per Row 2 Number of Bores 2

Bore Spacing 25.0 ft on center

Bore Depth 301 ft Adj. Bore Depth* 333 ft System Run Fraction 0.613

Adj. Bore Depth is the adjusted bore depth. This is the depth of bore that should be used to accommodate unbalanced ground loads over time. A pre-construction test bore is recommended.

Grouting the bore annulus: Each vertical bore is to be grouted from the bottom to the top. Grout field mix T.C. testing is recommended. Grout Recommendation: TGLite by GeoPro Inc.

GHEX Piping:

Vertical Bore: 1.25" HDPE SDR-11 with factory u-bend

Horizontal Piping:

From Bore to Building all pipe should be a minimum of 4' below grade.

Supply lines should be below Return lines.

2" foam board insulation should separate supply and return lines when feasible.

2" foam board insulation should be above return lines when feasible.

Horizontal piping should be in backfill free from material that may be a hazard to the pipe.

GHEX Manifold:

Vertical bore loopfield will be (2) individual closed loop circuits bringing in a total of (2) 1.25" supply and (2) 1.25" return lines. Interior piping: install full port valves on each supply and each return to a common supply and common return header. Install fill and drain ports followed by full port valves on header. Connect supply and return to pumping station.

Note: Mechanical or 'Stab' fittings are not recommended for any portion of exterior below grade piping. All exterior below grade pipe connections are to be by fusion of HDPE pipe and HDPE fittings.

ENERGY STUDY FOR SLATE LIBRARY

Wall penetrations to be sealed with 'link seal' style fittings inside pvc sleeve. Sleeve sealed with either silicone, hydrolic cement or similar.

Recommended freeze protection – 22% to 15 F with Propylene Glycol

System Sequencing

- 1. GSHP thermostat calls for conditioning
- 2. GHEX circulator pump responds causing flow in GHEX
- 3. GSHP provides desired conditioning

It is recommended that where GSHP equipment allows that the fan be set to on at all times. This maintains desired air circulation blending conditioned air more evenly throughout the conditioned space. Doing this will reduce the circumstance of hot spot/cold spot improving occupant comfort and reducing overall energy consumption.

Equipment Efficiencies

Note: GSHP efficiencies shown below are system wide averages which include pumping and applicable resistance energy. ASHP efficiencies have been adjusted from manufacturer's stated HSPF to more closely reflect installed operation in your region.

GSHP (COP avg) 3.52

INSULATION SAVINGS CALCULATIONS

ECM#2A			Summary of Ene	rgy Savings - ATT	IC INSULA	ATION	
			,				
					Savings	%	
			Baseline Heat Load	After ECM #2A	10E6 Btu/yr	Reduction	
Fuel Energy Usa	age (MI	MBtu/yr)	58.59	56.74	1.86	3.2%	
New Furnace	System	efficiency	96%	96%			
Fuel Energy	Usage (I	MBtu/yr)	61	59			
Energy Sav	/ings		% Reduction	Propane Use after ECM1a	Gallons Saved	\$/Unit	\$ Saved
			3.2%	617	20	\$2.150	\$42
					Tota	l Savings (\$)	\$42
				Cost	Savings	Payback	
Attic Insulation&			Measure	\$	\$	Years	
Air Sealing	\$1,256		ECM2A	\$1,256	\$42	29.9	
				•			•
Note:							
Cost estimates were developed	by BEA b	ased upon o	uotes by EnergiaUSA				

ECM#2B	Energy	Savir	ngs -SLOPED CEIL	ING & ATTIC INS	SULATION		
	- 5,		<u> </u>				
					Savings	%	
			After ECM #1	After ECM #2B	10E6 Btu/yr	Reduction	
Fuel Energy	Usage (MI	MBtu/yr)	58.59	46.36	12.23	20.9%	
New Furr	nace System	efficiency	96%	96%			
Fuel Ene	rgy Usage (I	MMBtu/yr)	61	48			
Energy S	Savings		% Reduction	Propane Use after ECM1	Gallons Saved	\$/Unit	\$ Saved
			20.9%	617	129	\$2.150	\$277
					Tota	I Savings (\$)	\$277
				Cost	Savings	Payback	
Attic Insulation& Roof Slop	oe &		Measure	\$	\$	Years	
Air Sealing , including	\$6,794		ECM2B	\$6,794	\$277	24.5	
Installation of studs to supp	port						
sheet rocking over new ins							
Note1: Does not include re	emoval of dec	orative tin o	or its reinstalltion				
Note 2: Insulation cost estima	ites were devel	oped by BEA	A based upon quotes by EnergiaUSA				

ECM#2C	Ener	gy Sav	ings: WALL, SLO	PED CEILING & A	ATTIC INSU	JLATION	
		<u> </u>	·				
					Savings	%	
			After ECM #2	After ECM #2C	10E6 Btu/yr	Reduction	
Fuel Energy Us	sage (MI	MBtu/yr)	58.59	42.73	15.87	27.1%	
New Furnac	ce System	efficiency	96%	96%			
Fuel Energ	y Usage (I	MMBtu/yr)	61	45			
Energy Sa	vings		% Reduction	Propane Use after ECM1	Gallons Saved	\$/Unit	\$ Saved
			27.1%	617	167	\$2.150	\$359
					Tota	I Savings (\$)	\$359
				Cost	Savings	Payback	
Air Sealing , including			Measure	\$	\$	Years	
Installation of studs to sup	\$12,187		ECM2C	\$12,187	\$359	33.9	
sheet rocking over new ins	sulation		_				

sheet rocking over new insulation

Note1: Does not include removal of decorative tin or its reinstallation nor removal, storage, or handling of existing books and bookshelves.

Note 2: Insulation cost estimates were developed by BEA based upon quotes by EnergiaUSA

HEAT BALANCE-EXISTING CONDITION

	HEAT BALANCE										
GAINS AND LOSSES BTU/HEATING SEASON*1E6											
CONDUCT	CONDUCTION LOSSES -74.7										
INFILTRA	TION LOSSES		-12.8								
VENTILAT	ION LOSSES		0.0								
SOLAR GA	AIN		20.7								
OCCUPAN	IT GAIN		5.5								
ELECTRIC	AL GAIN		2.7								
NET HEA	TING DEM	AND	-58.6								
	Net Heating	/Energy	Seasonal								
	Demand Required Efficiency										
	(MMbtu) (MMbtu) %										
	58.6 76 78%										

		CONDU	JCTION I	LOSSES			
			HOURS/	DAYS/	TEMP	LOSSES	Sub
#	Zone	UA	DAY	-	DIFF	(* 1E6)	Totals
1	Basement	26	4	120	20	0	
		26	20	120	15	1	
		26	24	92	15	1	2.0
2	Main Library Area	366	4	120	35	6	
		366	20	120	27	24	
		366	24	92	20	16	46.0
3	Room at Base of Stairs	66	4	120	25	1	
		66	20	120	23	4	
		66	24	92	20	3	7.3
4	Loft Storage Area	174	4	120	25	2	
		174	20	120	23	10	
		174	24	92	20	8	19.4
	Total UA	631		Con	duction T	otal	74.7

				INFILTE	RATION I	OSSES			
			0.4	пли	MIIONI	JOBBEB			
			0.4	HRS/	DAYS/		TEMP	LOSSES	Sub
ш	7	VOLUME	ACTT		YR	0.010	DIFF		
#	Zone	VOLUME	ACH	DAY	YK	0.018	DIFF	(* 1E6)	Totals
1	Basement	6,054	0.35	20	120	0.018	15	1.4	
		6,054	0.35	24	92	0.018	15	1.3	
	Occ.	6,054	0.35	4	120	0.018	20	0.4	3.0
2	Main Library Area	6,541	0.40	20	120	0.018	27	3.1	
		6,541	0.40	24	92	0.018	20	2.1	
	Occ.	6,541	0.50	4	120	0.018	35	1.0	6.1
3	Room at Base of Stairs	935	0.35	20	120	0.018	23	0.3	
		935	0.35	24	92	0.018	20	0.3	
	Occ.	935	0.35	4	120	0.018	25	0.1	0.7
4	Loft Storage Area	4,325	0.35	20	120	0.018	23	1.5	
		4,325	0.35	24	92	0.018	20	1.2	
	Occ.	4,325	0.35	4	120	0.018	25	0.3	3.0
				•					
						Infi	ltration T	otal	12.8

		HEAT LOSS C	COEFFICIENTS			
Zone	Building		U-Value	Area		UA-Value
#	Zone		(BTU/hr-sf-F)	(sf)		(BTU/hr-F)
1	Basement	Roof	0.059	0		0
		Walls		0		0
		Walls - Below Grade	0.021	868		18
		Doors	0.400	0		0
		Windows	0.550	0		0
		Slab/Floor	0.008	961		8
			Win	ng UA Total	25.6	
						_
2	Main Library Area	Ceiling to Loft	0.033	961		22
		Walls	0.082	664		54
				0		0
		Doors	0.400	23		9
		Windows	0.550	210		116
		1st Floor to Basement	0.171	961		165
			Win	ng UA Total	365.8	
3	Room at Base of Stain	rs Roof	0.033	961		32
		Walls	0.082	153		13
				0		0
		Doors	0.400	0		0
		Windows	0.550	39		21
		Slab/Floor	0.171			0
				ng UA Total	65.7	
				8		
4	Loft Storage Area	Roof	0.059	372		22
		Walls Vertical	0.082	190		16
		Sloped Roof Area	0.145	868		126
		Doors	0.400	0		0
		Windows	0.550	20		11
		Slab/Floor	0.008			0
			Win	ng UA Total	174.3	
				g Total UA:	631.4	

HEAT LOADS AFTER ECM2A ATTIC INSULATION

HEAT LOADS AFTER ECM2A										
GAINS AND LOSSES BTU/HEATING SEASON*1E6										
CONDUCTION LOSSES	}	-73.0								
INFILTRATION LOSSES	S	-12.7								
VENTILATION LOSSES		0.0								
SOLAR GAIN		20.7								
OCCUPANT GAIN		5.5								
ELECTRICAL GAIN	2.7									
NET HEATING DEM	-56.7									

		CONDI	UCTION I	LOSSES			
			HOURS/	DAYS/	TEMP	LOSSES	Sub
#	Zone	UA	DAY	-	DIFF	(* 1E6)	Total
1	Basement	26	4	120	20	0	
		26	20	120	15	1	
		26	24	92	15	1	2.0
		•					
2	Main Library Area	366	4	120	35	6	
		366	20	120	27	24	
		366	24	92	20	16	46.0
3	Room at Base of Stairs	66	4	120	25	1	
		66	20	120	23	4	
		66	24	92	20	3	7.3
4	Loft Storage Area	158	4	120	25	2	
		158	20	120	23	9	
		158	24	92	20	7	17.6
	Total UA	615		Con	duction T	Total	73.0

				INFILTE	ATION I	LOSSES					
	0.4										
,,	7	WOLLD IE	ACIT	HRS/	DAYS/	0.010	TEMP	LOSSES	Sub		
#	Zone	VOLUME	ACH	DAY	YR	0.018	DIFF	(* 1E6)	Totals		
1	Basement	6,054	0.35	20	120	0.018	15	1.4			
		6,054	0.35	24	92	0.018	15	1.3			
	Occ.	6,054	0.35	4	120	0.018	20	0.4	3.0		
2	Main Library Area	6,541	0.40	20	120	0.018	27	3.1			
		6,541	0.40	24	92	0.018	20	2.1			
	Occ.	6,541	0.50	4	120	0.018	35	1.0	6.1		
3	Room at Base of Stairs	935	0.35	20	120	0.018	23	0.3			
		935	0.35	24	92	0.018	20	0.3			
	Occ.	935	0.35	4	120	0.018	25	0.1	0.7		
4	Loft Storage Area	4,325	0.34	20	120	0.018	23	1.5			
		4,325	0.34	24	92	0.018	20	1.2			
	Occ.	4,325	0.34	4	120	0.018	25	0.3	2.9		
						Infi	ltration T	'otal	12.7		

HEAT LOADS AFTER ECM2B SLOPING CEILING & ATTIC INSULATION

HEAT LOAD AFTER ECM2B										
GAINS AND LOSSES BTU/HEATING SEASON*1E6										
CONDUCTION LOSSES -62.6										
INFILTRATION LOSSES		-12.7								
VENTILATION LOSSES		0.0								
SOLAR GAIN		20.7								
OCCUPANT GAIN		5.5								
ELECTRICAL GAIN	2.7									
NET HEATING DEMAND -46.4										

		COND	UCTION I	LOSSES			
			HOURS/	DAYS/	TEMP	LOSSES	Sub
#	Zone	UA	DAY	-	DIFF	(* 1E6)	Total
1	Basement	26	4	120	20	0	
		26	20	120	15	1	
		26	24	92	15	1	2.0
						'	
2	Main Library Area	366	4	120	35	6	
		366	20	120	27	24	
		366	24	92	20	16	46.0
3	Room at Base of Stairs	66	4	120	25	1	
		66	20	120	23	4	
		66	24	92	20	3	7.3
4	Loft Storage Area	65	4	120	25	1	
		65	20	120	23	4	
		65	24	92	20	3	7.3
						1	
	Total UA	522		Con	duction 7	Total	62.6

		HEAT LOSS C	COEFFICIENTS			
Zone	Building	IIIII EOSS C	U-Value	Area		UA-Value
#	Zone		(BTU/hr-sf-F)	(sf)		(BTU/hr-F)
1	Basement	Roof	0.059	0		0
1	Dasement		0.039			
		Walls	0.021	0		0
		Walls - Below Grade	0.021	868		18
		Doors Windows	0.400 0.550	0 0		0
		Slab/Floor	0.008	961		8
		S1a0/F100f			25.6	0
			Wii	ng UA Total	25.6	_
	D.C. T.1	G 11	0.022	061		22
2	Main Library Area	Ceiling to Loft	0.033	961		22
		Walls	0.082	664 0		54
		Doors	0.400	23		9
		Doors Windows	0.400	210		116
		1st Floor to Basement	0.171	961 ng UA Total	365.8	165
				ig UA Total	303.0	4
3	Room at Base of Stair	Poof	0.033	961		32
3	Room at Dase of Stan	Walls	0.033	153		13
		wans	0.082			
				0		0
		Doors	0.400	0		0
		Windows	0.550	39		21
		Slab/Floor	0.171			0
			Wir	ng UA Total	65.7	
	·	I				
4	Loft Storage Area	Roof	0.016	372		6
		Walls Vertical	0.082	190		16
		Sloped Roof Area	0.038	868		33
		Doors	0.400	0		0
		Windows	0.550	20		11
		Slab/Floor	0.008	. TIA 7D 4 1	(5.3	0
			Wir	ng UA Total	65.2	_
			D-2132	- T-4-1 TTA	533.3	
			Building	g Total UA:	522.3	

HEAT LOADS AFTER ECM2C WALL, SLOPING CEILING & ATTIC INSULATION

HEAT LOAD AFTER ECM3C									
GAINS AND LOSSES BTU/HEATING SEASON*1E6									
CONDUCTION LOSSES		-59.5							
INFILTRATION LOSSES		-12.4							
VENTILATION LOSSES		0.0							
SOLAR GAIN		20.7							
OCCUPANT GAIN		5.5							
ELECTRICAL GAIN		2.7							
NET HEATING DEMA	-43.0								

		CONDU	JCTION I	LOSSES						
			HOURS/	DAYS/	TEMP	LOSSES	Sub			
#	Zone	UA	DAY	-	DIFF	(* 1E6)	Totals			
1	Basement	26	4	120	20	0				
		26	20	120	15	1				
		26	24	92	15	1	2.0			
2	Main Library Area	349	4	120	35	6				
		349	20	120	27	23				
		349	24	92	20	15	43.9			
3	Room at Base of Stairs	62	4	120	25	1				
		62	20	120	23	3				
		62	24	92	20	3	6.9			
4	Loft Storage Area	60	4	120	25	1				
		60	20	120	23	3				
		60	24	92	20	3	6.7			
	Total UA	496		Con	duction T	otal	59.5			

		HEAT LOSS CO	EFFICIENTS			
Zone	Building		U-Value	Area		UA-Value
#	Zone		BTU/hr-sf-F)	(sf)		(BTU/hr-F)
1	Basement	Roof	0.059	0		0
		Walls		0		0
		Walls - Below Grade	0.021	868		18
		Doors	0.400	0		0
		Windows	0.550	0		0
		Slab/Floor	0.008	961		8
			Wir	ng UA Total	25.6	
				<u> </u>		-
2	Main Library Area	Ceiling to Loft	0.033	961		22
		Walls	0.056	664		37
				0		0
		Doors	0.400	23		9
		Windows	0.550	210		116
		1st Floor to Basement	0.171	961		165
			Wir	ng UA Total	348.8	
3	Room at Base of Stair	s Roof	0.033	961		32
		Walls	0.056	153		9
				0		0
		Doors	0.400	0		0
		Windows	0.550	39		21
		Slab/Floor	0.171			0
			Wir	ng UA Total	61.7	
4	Loft Storage Area	Roof	0.016	372		6
		Walls Vertical	0.056	190		11
		Sloped Roof Area	0.038	868		33
		Doors	0.400	0		0
		Windows	0.550	20		11
		Slab/Floor	0.008			0
			Wir	ng UA Total	60.4	
			Building	g Total UA:	496.5	
			Suruin	5 20 m C. 16	., 010	1

				INFILTE	RATION I	LOSSES			
			0.4						
#	Zone	VOLUME	ACH	HRS/ DAY	DAYS/ YR	0.018	TEMP DIFF	LOSSES (* 1E6)	Sub Totals
1	Basement	6,054	0.33	20	120	0.018	15	1.3	
		6,054	0.33	24	92	0.018	15	1.2	
	Occ.	6,054	0.00	4	120	0.018	20	0.0	2.5
2	Main Library Area	6,541	0.40	20	120	0.018	27	3.1	
		6,541	0.40	24	92	0.018	20	2.1	
	Occ.	6,541	0.50	4	120	0.018	35	1.0	6.1
	•				•				
3	Room at Base of Stairs	935	0.35	20	120	0.018	23	0.3	
		935	0.35	24	92	0.018	20	0.3	
	Occ.	935	0.35	4	120	0.018	25	0.1	0.7
4	Loft Storage Area	4,325	0.34	20	120	0.018	23	1.5	
		4,325	0.34	24	92	0.018	20	1.2	
	Occ.	4,325	0.34	4	120	0.018	25	0.3	2.9
						Infi	ltration T	'otal	12.2
	•			<u>'</u>	1				