

BALES ENERGY ASSOCIATES

Date: April 21, 2014
DRAFT REVISIONS INCLUDING HEAT PUMP ANALYSIS

ENERGY STUDY FOR

Riverside/ Four Winds School 54 French King Highway Gill, MA 01354

Completed By:

Bales Energy Associates

www.balesenergy.com
50 Miles Street
Greenfield, MA 01301
413-863-5020

Consulting Energy Engineer: Bart Bales, PE, MSME bart.bales@balesenergy.com

TABLE OF CONTENTS

Introduction	4
Executive Summary	4
Energy Conservation Opportunities Evaluated	4
Executive Summary Chart	5
Existing Conditions	6
Facility Description	6
Utility Energy Use	6
Billed Energy Use Chart of Electricity & Fuel	6
Heating Ventilating & Air Conditioning Systems	7
Boiler	7
HVAC Improvement Measure Options	8
Option 1: Convert Existing Steam System to Propane-Fired Condensing Boiler win Distribution	th Hydronic
Option 2: Convert Existing Steam System to Water-to-Water Ground-Source He System with New Fan Coils and Hydronic Distribution	at Pump
Option 3: Installation of Distributed Split System Air-to-Air Heat Pumps	
Heating Distribution Systems	8
Ventilation Considerations	9
Building Temperature & Scheduling Controls	10
Domestic Hot Water Heating Systems	10
Electrical Systems	11
Lighting Systems	11
Building Enclosure	11
Roof and Attic	11
Recommendation for Attic	12

	Walls	12
	Recommendation for Wall	12
۱P	PENDICES	13
C	alculations & Details:	
Н	leating System Improvement Measures	14
	Option 1: Conversion to Hydronic Operation & Install Propane-Fired Condensing Boiler	15
	Space Heating Savings Chart	15
	Lochinvar Boilers	16
	Option 2: Convert Existing Steam System to Water-to-Water Ground-Source Heat Pump System with New Fan Coils and Hydronic Distribution	24
	Option 3: Installation of Distributed Split System Air-to-Air Heat Pumps	28
٧	Vall & Attic Insulation & Air Sealing Measure Information	29
	Summary of Energy Savings Due to Attic Insulation Chart	29
	Summary of Energy Savings Due to Wall & Attic Insulation Chart	31
A	Innual Heat Balance - Existing Condition	31
	Heat Balance Chart	32
	Conduction Losses Chart	32
	Infiltration Losses Chart	32
	Heat Loss Coefficients Chart	34
	Window Solar Heat Gain Chart	34
	Temperature & Schedule Information Chart	34
A	Annual Building Heat Loads After Attic Insulation & Air Sealing	34
	Heat Load After Attic Insulation Chart	34
	Conduction Losses Chart	34
	Infiltration Losses Chart	34
	Heat Loss Coefficients Chart	35
A	Annual Building Heat Loads After Wall & Attic Insulation & Air Sealing	38
	Heat Load	38
	Conduction Losses Chart	38
	Heat Loss Coefficients Chart	38

Introduction

Bales Energy Associates, an energy efficiency engineering firm, was contracted to provide an ASHRAE Level 2 energy audit for Riverside/Four Winds School located at 54 French King Highway in Gill, Massachusetts.

Bart Bales, PE, MSME, senior engineer at Bales Energy Associates, visited the site, reviewed energy usage & billing information, examined relevant equipment and systems, and developed energy analyses and recommendations with regard to building's energy related systems.

Executive Summary

Energy Conservation Opportunities Evaluated

Bales Energy Associates has approached the Riverside/Four Winds School in terms of the whole system. Improvements in various systems have interactive impacts with other systems. Key conclusions are the following:

- 1. HVAC Systems Recommendations
 Option 1: Convert Existing Steam System to Propane-Fired Condensing Boiler with Hydronic Distribution
 - Convert the existing steam system to hydronic operation using existing piping where feasible
 - Re-use existing radiators in the classrooms and historical room
 - Replace radiators not compatible with hydronic operation (in the hallway and office)
 with radiative panel convectors
 - Install a propane-fired, premium efficiency condensing hydronic boiler (with propane fuel storage tank capacity) to provide hot water to the building. Install necessary pump capacity to deliver heating water to the radiators and convectors serving building
 - Boiler replacement includes installation of microprocessor-based scheduling timeclock capabilities to provide scheduling of occupied and unoccupied periods. Install an outdoor air temperature sensor and a space temperature sensor. Use space temperature and outside air sensor inputs sensors to determine when boiler and circulator shall run for daytime temperature maintenance, and unoccupied temperature setback.

Option 2: Convert Existing Steam System to Water-to-Water Ground-Source Heat Pump System with New Fan Coils and Hydronic Distribution

Option 3: Installation of Distributed Split System Air-to-Air Heat Pumps

- Enclosure Improvements can substantially reduce the building's heat loss characteristics.Recommendations include:
 - Insulate the attic area of the building to achieve an R-value of R60. Add sufficient cellulose insulation (15 inches of blown cellulose to add approximately R55 to the existing ceiling

assembly) to achieve the desired attic floor assembly R-value (R60). Air seal bypasses and penetrations in the attic. Seal off no longer used natural ventilation ductwork where it penetrates the ceiling.

• Install dense pack cellulose in the building walls cellulose (4 inches, R14).

The costs, savings, and economic payback for these energy conservation measures are presented in the following Executive Summary Chart. The values shown in the Executive Summary Chart represent the savings with measures taken in the order of economic feasibility shown. The calculations supporting each measure are included in the appendices.

				Executiv	e Summa	ry Chart	Oil	Propane	Electricity						
							\$2.98	\$2.15	\$0.14						
							\$/Gallon	\$/Gallon	\$/KWH						
					Total	Incremental	Oil	Propane	Electricity	Annual	Total	Incremental	Total Payback	Incremental	
ECM			Incremental	Available	Cost after	Cost after	Savings	Savings	Savings	Savings	Payback	Payback	Payback after	Payback after	Life
#	Energy Conservation Measures	Cost	Cost (\$)	Incentives (\$)	Incentives (\$)	Incentives (\$)	(Gallons/yr)	(Gallons/yr)	(KWH/yr)	(\$/yr)	(yrs)	(yrs)	Incentives (yrs)	Incentives (yrs)	Years
ECM1	Option 1: Propane-Fired Condensing Boiler	\$52,030	\$17,138	0	\$52,030	\$17,138	1,777	-1,678		\$1,689	30.8	10.1	30.8	10.1	20+
	Option 2: Ground Source Heat Pump	\$142,272	\$107,380	\$30,091	\$112,181	\$77,289	1,777		-12,790	\$3,454	41.2	31.1	32.5	22.4	30+
	Option 3: Air Source Heat Pump	\$64,832	\$29,940	\$1,047	\$63,785	\$28,893	1,777		-16,764	\$2,881	22.5	10.4	22.1	10.0	30+
ECM2	Insulate & Air-Seal the Attic	\$7,828	\$7,828	0	\$7,828	\$7,828		308		\$661	11.8	11.8	11.8	11.8	30+
ECM3	Insulate the First Floor Walls	\$6,528	\$6,528	0	\$6,528	\$6,528		851		\$1,830	3.6	3.6	3.6	3.6	30+
	Totals	\$273,490	\$168,814	\$31,137	\$242,352	\$137,676	5,331	-519	-29,554	\$10,515	26.0	16.1	23.0	13.1	

Existing Conditions

Facility Description

The Riverside/Four Winds School is a moderate sized wood-framed, sloped-roofed building located at 54 French King Highway, in Gill, Massachusetts. The building comprises a basement (currently used only for storage) and a first floor with two large classrooms, a former classroom now used by the historical society and administrative offices.

The building is owned by the town and currently leased to the Four Winds School.

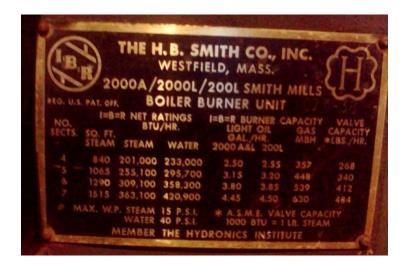
Utility Energy Use

Utility data was collected and is tabulated below. Western Massachusetts Electric Company provides electricity. For heating, the Riverside/Four Winds School uses #2 fuel oil. (Note: WMECO (and its parent company Northeast Utilities), recently merged with NSTAR. As a result, changes in procedures and personnel in charge of related utility programs are in transition.)

Jul 2012-June 2013	3ergy Use	Table fo	r Electric	ity & Fuel				
	<u> </u>							
Building Name	Riverside Build	ding						
Owner	Town Of Gill, I	MA						
Account #								
	Electricity	Electricity	Oil	Gas	Energy \$			
Month	KWH	Total \$	Gallons	\$	Totals			
Jul	109	\$24			\$24			
Aug	122	\$27			\$27			
Sept	212	\$47	64.0	\$191	\$237			
Oct	442	\$97		\$0	\$97			
Nov	422	\$93	205.0	\$611	\$703			
Dec	411	\$90		\$0	\$90			
Jan	544	\$120	320.0	\$953	\$1,073			
Feb	412	\$91	695.0	\$2,070	\$2,161			
Mar	375	\$83	197.0	\$587	\$669			
Apr	426	\$94	296.0	\$882	\$975			
May	325	\$72			\$72			
Jun	237	\$52			\$52			
Annual (Units)	4,037	\$888	1,777.0	\$5,292	\$6,181			
Heating Season (Units)	3,032	\$667	1,777.0	\$5,102	\$5,769			
				Energy Use				
				Totals (Mbtu)				
Annual (Mbtu)	13,774		246,469.9	260,244	Energy \$			
Heating Season (Mbtu)	10,345		246,469.9	256,815	Totals			
\$/Energy Unit				Totals (Mbtu/sf)	(\$/sf)			
Annual (Mbtu/sf)	2.3		40.3	42.6	\$0.87			
Heating Season (Mbtu/sf)	1.7		40.3	42.0	\$0.83			
Htng Season \$/Energy Unit								
Building Name	Riverside Build	ding	Heated	Square Footage	6,114			

Prescriptive and custom utility incentives are available for some of the measures described. When the report's contents are accepted by the client, the report may be presented to the utilities for review and determination of levels of custom incentives the utilities will offer, if any.

Western Massachusetts Electric Company contacts are: Lynn Ditullio (ditullb@nu.com) and Robert Dvorchik (dvorcrs@nu.com).


Heating, Ventilating & Air Conditioning Systems

Boiler

The building is served by a very old five-section, oil-fired, atmospheric steam boiler (HB Smith, 2000A/2000L/200L Mills) with a rated steam output capacity of 255,100 Btu/hour. The boiler has an estimated combustion efficiency of approximately 80%. (The most recent combustion test tag indicated performance at 65%, but the boiler appears to have been equipped more recently with a new Carlin burner.) There is no outside air intake through the boiler wall to provide combustion air.

Recommended Boiler Improvement Measure Options

Option 1: Convert Existing Steam System to Propane-Fired Condensing Boiler with Hydronic Distribution

- Convert the existing steam system to hydronic operation using existing piping where feasible
- Re-use existing radiators in the classrooms and historical room
- Replace the four radiators not compatible with hydronic operation (in the hallway and office) with radiative panel convectors
- Install a propane-fired, premium efficiency condensing hydronic boiler (with propane fuel storage tank capacity) to provide hot water to the building. Install necessary pump capacity to deliver heating water to the radiators and convectors serving building
- Boiler replacement includes installation of microprocessor-based scheduling time-clock capabilities to provide scheduling of occupied and unoccupied periods. Install an outdoor air temperature sensor and a space temperature sensor. Use space temperature and outside air sensor inputs to determine when boiler and circulator shall run for daytime temperature maintenance, and for unoccupied temperature setback.

Option 2: Replace Existing Steam System to Water-to-Water Ground-Source Heat Pump System with New Fan Coils and Hydronic Distribution

This approach utilizes a water—to-water ground source heat pump system to provide conditioned water to ten new hydronic fan-coil units. Fan coil units will be installed to temper the various spaces. A new hydronic distribution loop will deliver water to each fancoil. Re-use of the existing radiators is not appropriate due to the lower water temperatures provided by the heat pump system.

Note that an added advantage of the heat pump system is that air conditioning capability is added for the building.

The ground-source borehole system comprises 6 boreholes of 330 foot depth

Option 3: Replace Existing Steam Heating System with Distributed Air-to-Air Split System Heat Pumps

This approach utilizes nine (9) new air –to- air- source heat pumps to provide conditioned air to directly condition the various spaces.

Note that an added advantage of the heat pump system is that air conditioning capability is added for the building.

Heating Distribution Systems

The building is a one-pipe steam heating system (with a "drip leg" at the end of the supply line to allow condensate to return to the boiler (below the boiler's "water-line"). Given the convenient location of the steam piping running all the way around the perimeter of the building and the central location of the boiler, it is possible for the existing steam piping to be considered for re-use to deliver water as a heating medium with a limited amount of added piping required.

Prior to implementation of re-use of the steam pipe for water distribution pipe, it is recommended that the pipe be air-tested at elevated pressures to assess the potential presence of any leaks. (A hydronic system works at higher pressures than a steam system; a hydronic system might be expected to operate at approximately 60 psig, while a low-pressure steam system such as the one at the Riverside School would be expected to typically operate at pressures of 5 to 10 psig.)

Terminal heating is provided by radiators in all areas except one. The type of radiator found in the classrooms is shown below. It may be seen to be a one-pipe radiator with a steam valve on one end and an air relief valve on the other. The presence of screw fitting on the top and bottom manifolds of each end of the radiator indicate that these radiators were designed for use with either steam or hot water and that they are potentially able to be converted to hydronic operation.

Ceiling mounted radiators of similar function and slightly different configuration serve the seldom-used basement lavatories.

The four radiators in the office and the front hallways do not have top manifolds that connect the sections and are not equipped with screw fittings. These radiators are not as readily converted for use in a hydronic system. Thus, in converting the building to hydronic operation, these radiators would be recommended for replacement with convective radiator panels.

In one basement storage area (former cafeteria of many years ago) there is a length of ceiling mounted fin-tube radiation. This radiation may be potentially re-used for hydronic operation to provide heat to the storage area.

In the other large storage area in the basement (at one time used by the police department), it appears that a section of radiation has been removed. In the final conversion of this building, an assessment of whether to add radiation to this area or not should be made.

Ventilation Considerations

The building was designed for thermally driven "natural" ventilation. Radiators located in ducts would provide sufficient heating of air in the ducts that it would rise to leave the building via large ducts leading to the large cupola on the top of the building. The air leaving the building would be replaced by un-tempered outside air leaking into the building through various elements of the building construction.

This system stopped being used when energy prices increased. One of the radiators in the ducts was noted to have been removed. Another duct radiator remained in place but the valve which served it was

locked closed. With no thermal energy to drive the process, cool air would sometimes "drop" down the ducts and bring cool air into the space to which it was attached.

In the picture below, it may be seen that the exhaust grill has been blocked with a rectangle of foam board to block the air flow.

Note that the metal ducts attached to this ventilation system are large and that they penetrate the ceiling and continue on into the unheated attic and then connect to the large metal cupola at the peak of the attic. In effect, these ducts, located inside the building's thermal envelope, serve as fins to conduct thermal energy from the heated space to the unheated attic and also to the outdoors.

Since these ducts are no longer being used for ventilation, it may be useful to consider sealing the locations where they pass through the ceiling. Though not an energy-savings measure in this particular case, the Town may wish to consider installing an energy-recovery ventilator to provide a more assured supply of outside air to the two classrooms when the air sealing and insulation measures are being completed. (Alternately, the spaces can continue to use the operable windows if added ventilation air is felt to be required.)

Building Temperature & Scheduling Controls

Operation of the boiler is controlled by a single manual thermostat serving the building.

As part of the boiler conversion replacement measure, Bales Energy Associates **recommends installation of an electronic programmable timeclock capacity and an outdoor air sensor and an indoor space sensor.** Hydronic supply water temperatures would be reset to different levels depending on the outside air temperature. Outdoor temperature reset capability is critical to allow a boiler designed for condensing operation to actually condense the water vapor out of its exhaust to capture a greater percentage of the total energy available from the fuel being burned.

Domestic Hot Water Heating Systems

Hot water is provided by a 2.5 gallon mini-tank tank electric water heater (Ariston Model 2.5 Ti). Given the very low water use in the building, this is an efficient way to provide the limited quantities of warm water that are required. Water usage is low in the building; water uses are limited to a lavatory sink on the first floor. Other than encouraging the town to insulate the three feet of un-insulated ½ inch domestic hot water pipe leading from the mini-tank in the basement to the lavatory on the floor above, Bales Energy Associates makes no recommendations with regard to domestic hot water system improvements.

Electrical Systems

Lighting Systems

Classrooms and offices in the building are lighted with four foot fluorescent fixtures equipped with T-8 lamps and compatible electronic ballasts.

Building Enclosure

The partially finished basement and first floor of the Riverside/Four Winds School comprise approximately 6,114 square feet of heated floor area. All school activities take place on the first floor which comprises two classrooms and administrative offices, plus one classroom which is used by thehistorical society.

The basement is currently only used for storage.

Roof and Attic

The Riverside/Four Winds School has a sloped-roof with a metal ventilation cupola on top.

The attic is unfloored and has 2 to 3 inches of rock wool insulation in place. Large metal ductwork designed for use by the heat-driven natural ventilation system penetrates the first floor ceiling and continues on through the attic to the metal exhaust cupola on the roof. The ducts represent a large air bypasses. Thereare also bypasses from the first floor to the attic through the spaces around the duct work.

Recommendation for the Attic

Bales Energy Associates recommends that the attic floor joists be treated as the location of a thermal and air boundary layer. This involves the following steps:

- 1. Retain the cupola for ventilation out of the attic.
- 2. Insulate the attic floor assembly to add approximately 15 inches of loose-fill cellulose insulation (R55) to the attic to achieve a roof assembly value of R-60.
- 3. Air-seal the attic area to reduce infiltration.

Costs and savings for this measure are included in the Appendices.

Walls

The walls of the Riverside/Four Winds School are poorly insulated.

Recommendation for the Wall

Bales Energy Associates recommends that insulating the four inch wall assembly with approximately four inches of high-density cellulose (R14) insulation.

Costs and savings for this measure are included in the Appendices.

APPENDICES

HEATING SYSTEM IMPROVEMENT MEASURES

Conversion of System to Hydronic (Hot Water) Operation & Installation of Propane-Fired Condensing Hydronic Boiler

Equipment Type Boiler # Make Model Type Heating Medium Control Mode ximum Output Mbtu/ Steady State Eff Input Mbtu/Hr Seasonal Eff Percentage of Load stalled System Costs Boiler Totals Annual Building Operating Load (MMbtu/year)	ng Condition: Space Heating Boiler 1 H B Smith 2000A/2000L/200L Mills Atmospheric Steam 255 80% 319 65% 100% \$34,892		· ·	New Condition: Space Heating Boiler 1 Lochinvar Knight Condensing Hydronic Modulating 5:1 150 92% 163 92% 100%	Propane \$/gallon \$2.15 Space Heating Boiler	
\$2.98 Existin Equipment Type Boiler # Make Model Type Heating Medium Control Mode ximum Output Mbtu/ Steady State Eff Input Mbtu/Hr Seasonal Eff Percentage of Load stalled System Costs Boiler Totals Annual Building Operating Load (MMbtu/year)	Space Heating Boiler 1 H B Smith 2000A/2000L/200L Mills Atmospheric Steam 255 80% 319 65% 100%	Propane-Fired Condens radiators, conversion of o	nce Heating System	Space Heating Boiler 1 Lochinvar Knight Condensing Hydronic Modulating 5:1 150 92% 163 92% 100%	\$2.15 Space Heating	
Equipment Type Boiler # Make Model Type Heating Medium Control Mode kimum Output Mbtu/ Steady State Eff Input Mbtu/Hr Seasonal Eff Percentage of Load stalled System Costs Boiler Totals Annual Building Operating Load (MMbtu/year)	Space Heating Boiler 1 H B Smith 2000A/2000L/200L Mills Atmospheric Steam 255 80% 319 65% 100%	Propane-Fired Condens radiators, conversion of o	sing Boiler with 4 new	Space Heating Boiler 1 Lochinvar Knight Condensing Hydronic Modulating 5:1 150 92% 163 92% 100%	Space Heating	
Boiler # Make Model Type Heating Medium Control Mode kimum Output Mbtu/ Steady State Eff Input Mbtu/Hr Seasonal Eff Percentage of Load stalled System Costs Boiler Totals Annual Building Operating Load (MMbtu/year)	Boiler 1 H B Smith 2000A/2000L/200L Mills Atmospheric Steam 255 80% 319 65% 100%	Propane-Fired Condens radiators, conversion of o	sing Boiler with 4 new	Boiler 1 Lochinvar Knight Condensing Hydronic Modulating 5:1 150 92% 163 92% 100%	-	
Boiler # Make Model Type Heating Medium Control Mode kimum Output Mbtu/ Steady State Eff Input Mbtu/Hr Seasonal Eff Percentage of Load stalled System Costs Boiler Totals Annual Building Operating Load (MMbtu/year)	1 H B Smith 2000A/2000L/200L Mills Atmospheric Steam 255 80% 319 65% 100%	Propane-Fired Condens radiators, conversion of o	sing Boiler with 4 new	1 Lochinvar Knight Condensing Hydronic Modulating 5:1 150 92% 163 92% 100%	Boiler	
Make Model Type Heating Medium Control Mode imum Output Mbtu/ Steady State Eff Input Mbtu/Hr Seasonal Eff Percentage of Load talled System Costs Boiler Totals Annual Building Operating Load (MMbtu/year)	2000A/2000L/200L Mills Atmospheric Steam 255 80% 319 65% 100%	Propane-Fired Condens radiators, conversion of o	sing Boiler with 4 new	Knight Condensing Hydronic Modulating 5:1 150 92% 163 92% 100%		
Model Type Heating Medium Control Mode imum Output Mbtu/ Steady State Eff Input Mbtu/Hr Seasonal Eff Percentage of Load talled System Costs Boiler Totals Annual Building Operating Load (MMbtu/year)	2000A/2000L/200L Mills Atmospheric Steam 255 80% 319 65% 100%	Propane-Fired Condens radiators, conversion of o	sing Boiler with 4 new	Knight Condensing Hydronic Modulating 5:1 150 92% 163 92% 100%		
Type Heating Medium Control Mode imum Output Mbtw Steady State Eff Input Mbtw/Hr Seasonal Eff Percentage of Load talled System Costs Boiler Totals Annual Building Operating Load (MMbtw/year)	Atmospheric Steam 255 80% 319 65% 100%	Propane-Fired Condens radiators, conversion of o	sing Boiler with 4 new	Condensing Hydronic Modulating 5:1 150 92% 163 92% 100%		
Heating Medium Control Mode imum Output Mbtw Steady State Eff Input Mbtw/Hr Seasonal Eff Percentage of Load talled System Costs Boiler Totals Annual Building Operating Load (MMbtw/year)	Steam 255 80% 319 65% 100%	Propane-Fired Condens radiators, conversion of o	sing Boiler with 4 new	Hydronic Modulating 5:1 150 92% 163 92% 100%		
Control Mode imum Output Mbtw Steady State Eff Input Mbtw/Hr Seasonal Eff Percentage of Load talled System Costs Boiler Totals Annual Building Operating Load (MMbtw/year)	255 80% 319 65% 100%	Propane-Fired Condens radiators, conversion of o	sing Boiler with 4 new	Modulating 5:1 150 92% 163 92% 100%		
imum Output Mbtw Steady State Eff Input Mbtw/Hr Seasonal Eff Percentage of Load salled System Costs Boiler Totals Annual Building Operating Load (MMbtw/year)	80% 319 65% 100%	Propane-Fired Condens radiators, conversion of o	sing Boiler with 4 new	150 92% 163 92% 100%		
Steady State Eff Input Mbtu/Hr Seasonal Eff Percentage of Load alled System Costs Boiler Totals Annual Building Operating Load (MMbtu/year)	80% 319 65% 100%	Propane-Fired Condens radiators, conversion of o	sing Boiler with 4 new	92% 163 92% 100%		
Input Mbtu/Hr Seasonal Eff Percentage of Load talled System Costs Boiler Totals Annual Building Operating Load (MMbtu/year)	319 65% 100%	Propane-Fired Condens radiators, conversion of o	sing Boiler with 4 new	163 92% 100%		
Totals Annual Building Operating Load (MMbtu/year)	65% 100%	Propane-Fired Condens radiators, conversion of o	sing Boiler with 4 new	92% 100%		
Totals Annual Building Operating Load (MMbtu/year)	100%	Propane-Fired Condens radiators, conversion of o	sing Boiler with 4 new	100%		
Totals Annual Building Operating Load (MMbtu/year)		Propane-Fired Condens radiators, conversion of o	sing Boiler with 4 new			
Totals Annual Building Operating Load (MMbtu/year)	\$34,892	Propane-Fired Condens radiators, conversion of o	sing Boiler with 4 new			
Totals Annual Building Operating Load (MMbtu/year)	\$34,892	radiators, conversion of o	· ·	\$40,030		
Annual Building Operating Load (MMbtu/year)			ther existing radiators,			
Annual Building Operating Load (MMbtu/year)		circulator, controls and r				
Annual Building Operating Load (MMbtu/year)			equired piping changes			
Annual Building Operating Load (MMbtu/year)			Propane tank	\$7,000		
Annual Building Operating Load (MMbtu/year)		System Configuration	Contractor Oversight	\$5,000		
Building Operating Load (MMbtu/year)	\$34,892			\$52,030		
Operating Load (MMbtu/year)		Existing	New		Peak	Provide (#)
Load (MMbtu/year)	Summary of	Oil	Propane		Space	1
Load (MMbtu/year)	Existing	Heating	Heating	Fuel Cost	Heating	Boilers @
(MMbtu/year)	Building-Related	Usage	Usage	\$	Load	100%
	Heat Loads	Gallons	Gallons	Ť	(Mbtu/hr)	of design Loa
160,205	Existing Oil Use	1,777	Ganons	\$5,295	150	150
160,205		1,///	1,678	\$3,607	130	130
100,403	New Propane Use	IOAN I	1,0/0	φ3,007		
F1 F D-6	246 470	KWH				
Fuel Energy Before	246,470					
Fuel Energy After	174,136			44.600		
iel Energy saved	72,334		Savings \$	\$1,689		
Payback Calculation:						
i aydack Caiculation:		Cost	Savings	Payback		
Full Equipment Cost l	Racic	\$52,030	\$1,689	30.8		
i un Equipment Cost I	Dasis.	φ <i>54</i> , U3U	φ1,002	30.0		
Incremental Equipme			\$1,689	10.1		

LOCHINVAR BOILERS

For more than 80 years, Lochinvar has played a legendary role in commercial water heating. Now we're bringing that proven performance to the condensing market with the KNIGHT—today's most advanced fully modulating high-efficiency condensing boiler.

The KNIGHT is an installer's dream: lightweight and compact, with key components that are easy to access. The Lochinvar KNIGHT offers PVC venting versatility, rugged reliability, seven models with inputs ranging from 80,000 to 500,000 Btu/hr, and 93% DOE AFUE. And you'll love the SMART SYSTEMa control, which includes a service indicator, contractor accessible password protection, and a 2-line display with simple fault descriptions, not codes. Best of all, the KNIGHT offers more standard features than any other heating boiler available today—including outdoor reset and a boiler circulating pump supplied with every KB 080-285 unit. Plus every KNIGHT is backed by an outstanding 12-year warranty.

1.1 FEATURES

- Stainless steel heat exchanger
- Fully modulating burner w/5:1 turndown
- PVC venting up to 100 ft.
- Boiler circulating pump included
- Direct vent, sealed combustion

Legendary Performer...

Since its introduction in 2005, the KNIGHT modulating-condensing heating boiler has consistently delivered everything the professional needs for ease of installation and maintenance, and everything homeowners need for total comfort and long-term savings on energy costs.

Now, with 5 floor-standing models and 5 compact Wall Mount units, Lochinvar offers the industry's broadest selection of modulating-condensing heating boilers. And KNIGHT is the industry's most advanced boiler design, including the SMARTSYSTEM™

operating control that has quickly become a legendary benchmark among the trade!

For traditional space heating or radiant floor heating applications, KNIGHT offers your customers tremendous savings on energy costs compared to less efficient boilers. KNIGHT has earned the ENERGY STAR,

signifying that it has met strict energy-efficiency guidelines set by the EPA and U.S. Department of Energy.

10 Models - The Right Choice, for Every Application

"After my first KNIGHT installation, I loved it so much I installed it in my own home, and now my heating bill is half what it used to be."

– Rick Brunner, Hydronic Solutions, Nassau County, NY

KNIGHT is a great choice for radiant floor heating, baseboard and panel heater applications.

is joined at the Round Table

"Why do I like the KNIGHT? I don't know where to begin. The direct venting with 100 feet of intake and exhaust eliminates a lot of problems. I also like the low voltage features, and the SMART SYSTEM's outdoor reset capability. The internal sequencer is tremendously powerful and ideal for multiple boiler installations. It's also great-looking, and aesthetics are important to my customers. When I install KNIGHT, my customers know they are getting a highly efficient state-of-the-art system, and they've all been completely satisfied."

- Paul Rohrs, Biggerstaff Radiant Solutions, Lincoln, NE

KNIGHT lineup now includes 5 space-saving Wall Mount models from 50,000 to 210,000 Btu/hr

The KNIGHT floor-standing lineup features 5 small footprint designs from 80,000 to 285,000 Btu/hr

All KNIGHT Boilers meet or exceed the highest federal emissions requirements.

KNIGHT plus SQUIRE delivers domestic hot water for less!

The KNIGHT boiler's DHWP feature means you can easily install it with Lochinvar's new SQUIRE indirect water heater. With this winning combination, homeowners will get high-efficiency space heating from KNIGHT, plus all the domestic hot water they need from SQUIRE. Equipped with a stainless steel tank and heat exchanger, SQUIRE will provide more hot water with lower water heating costs compared to a standard gas or electric water heater.

& the Industry's Smartest Design

SMART SYSTEM

SMART SYSTEM is the industry's most advanced operating control. Right out of the box, it gives you unequaled control and monitoring functions that are easy to understand and use.

"I really like the KNIGHT Boiler because it's very simple to install and program. The SMART SYSTEM control is great and I really like being able to troubleshoot with the pocket PC. My customers choose KNIGHT for its high efficiency and state-of-the-art design, and they're all thrilled that KNIGHT operates so quietly and makes their home much more comfortable."

– Chad Padilla, TLC Plumbing, Albuquerque, NM

2-Line, 16-Character LCD Display

Displays setup and diagnostic information in words, not codes

Password Security

Dual passwords for installer and user

Product Service Indicator

Program reminders for cycle count, operation hours or last service

Pump Relay w/Freeze Protection

Ensures water temperature does not fall below 40°F

Low-Water Flow Indicator

Protects against high temperature differential in the heat exchanger with reduced modulation or shutdown

Outdoor Reset

Outdoor temperature monitor guides the reset schedule to meet load

Night Setback

Program a heating loop water temperature setback for any time of the day, each day of the week

Building Management System (BMS) Control

0-10 VDC, BMS-driven input for modulation rate or temperature control

DHWP with Pump Control

On call for hot water, SMART SYSTEM overrides outdoor reset and starts DHWP pump to the indirect. Runtime can alternate between heating and domestic hot water to meet demand simultaneously

System & Boiler Pump Controls

Provides power to both system and boiler pumps based on a call for heat. Programmable delay allows pumps to operate after a call has been satisfied

In/Out Temp. Sensors and Display

Allows installer to select which sensor controls the boiler setpoint

Lochinor

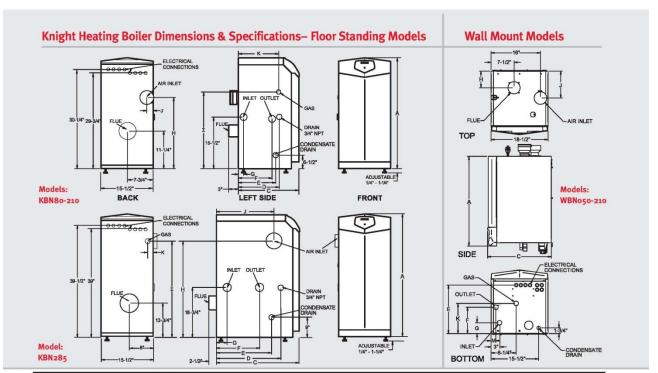
PC Connection -

Can be used with KNIGHT PC or Pocket PC software to troubleshoot and program SMART SYSTEM functions and to track historical data, including faults, trends and energy consumption.

Field Connection Versatility

User-friendly terminal strip allows for 28 low-voltage field connections. Plus, 4 line voltage connections supply power to the unit, and up to three pumps operated by the SMART SYSTEM.

Built-in Cascading Sequencer


SMART SYSTEM includes a built-in sequencer for 2-8 units, eliminating the cost and labor of a third-party sequence. On demand, one boiler acts as lead unit and modulates with demand to meet capacity. The additional load then "cascades" to the next boiler in line and continues all are operating or demand is satisfied. When demand drops, the process reverses.

"The control system on the KNIGHT is head and shoulders above anything else available. Straight out of the box, the KNIGHT and o anything i need without third-party controls. Hands-down, it's the best boiler on the market."

— Don Smet, Standard Plumbing Heating Controls Corp., Spokane, WA

(3)	KNI	GHT H	leatin	g Boiler	(3)	Dimens	ions an	d Specif	ications												
	Ing	out		Heating	NET																
Model	Min	Max	AFUE	Capacity	I=B=R												Gas	Water	Air	Vent	Shipping
Number	MBH	MBH	%	MBH	MBH	Α	C	D	E	F	G	Н	1	J	K	M	Conn.	Conn.	Inlet	Size	Weight
WBN050	10	50	95.3	45	39	29-1/4"	15-3/4"	NA	10-3/4"	10-3/4"	2"	6-3/4"	NA	3-1/4"	4-1/4"	2-3/4"	1/2"	1"	2"	2"	130
WBN080	16	80	95.3	72	63	29-1/4"	15-3/4"	NA	10-3/4"	10-3/4"	2"	6-3/4"	NA	3-1/4"	4-1/4"	2-3/4"	1/2"	1"	2"	2"	130
WBN105	21	105	95.4	97	82	29-1/4"	15-3/4"	NA	10-3/4"	10-3/4"	3-1/2"	5-1/2"	NA	3-1/4"	4-1/4"	2-3/4"	1/2"	1"	2"	2"	134
WBN150	30	150	95.5	135	119	29-1/4"	20-3/4"	NA	15-3/4"	8-1/2"	3-1/2"	5-1/2"	NA	8-3/4"	9-3/4"	1-1/2"	1/2"	1"	3"	3"	162
WBN210	42	210	95.7	190	165	29-1/4"	25"	NA	20"	12"	3-1/2"	5-1/2"	NA	13"	14"	1-1/2"	1/2"	1"	3"	3"	177
KBN080	16	80	95.3	72	63	33-1/4"	14"	7"	5-3/4"	5"	3"	20-1/2"	22"	1-3/4"	6-1/2"	NA	1/2"	1"	3"	3"	125
KBN105	21	105	95.4	97	82	33-1/4"	14"	6-1/2"	5-3/4"	4-1/2"	1-1/2"	20-1/2"	22"	1-3/4"	6-1/2"	NA	1/2"	1"	3"	3"	129
KBN150	30	150	95.5	135	119	33-1/4"	18"	12-1/4"	11-1/2"	10"	1-1/2"	21-1/4"	23"	1-3/4"	12"	NA	1/2"	1"	3"	3"	157
KBN210	42	210	95.7	190	165	33-1/4"	22-1/4"	16-1/2"	15-3/4"	14-1/4"	5-1/4"	21-1/4"	23"	1-3/4"	16-1/4"	NA	1/2"	1"	3"	3"	172
KBN285	57	285	96.0	260	226	42-1/2"	19-3/4"	12-3/4"	13-1/2"	6"	2"	34"	31"	11-3/4"	4-1/4"	NA	3/4"	1-1/4"	4"	4"	224
Notes: Pe	lotes: Performance data based on manufacturer's test results. Indoor installation only. All information subject to change. Change "N" to "L" for LP gas models.																				

Standard features in **BOLD** text indicate equipment you would pay extra for on competing models.

Standard Features > ENERGY STAR® Qualified

> 30 psi Relief Valve

> Modulating Burner with 5:1 Turndown

> ASME Stainless Steel Heat Exchanger

- 2-Line, 16-Character LCD Display

- Built-in Sequencing for 2-8 Boilers

> Inlet & Outlet Temperature Sensors

> SMART SYSTEM™ Operating Control, with:

> Gasketless Heat Exchanger Design

- Digital Operating Control

- 0 - 10 Vdc Input Control

- Product Service Indicator

- PC Connection Port

> Easy-Access Terminal Strip

- Password Security

- Outdoor Reset

- Time Clock

- > Low-Water Flow Indication > Automatic Reset High Limit
- > Contacts on Any Failure
- > 3-Pump Control (Boiler, System and DHWP)
- > Pump Relay with Freeze Protection
- > Boiler Circulating Pump (KBN080-285) (WBN050-210)
- > Direct-Spark Ignition
- > Low-NOx Operation
- > Natural to LP Gas Conversion Kit
- > Direct-Vent Sealed Combustion
- > PVC Venting up to 100 Feet
- > Sidewall Vent Terminals
- > Zero Clearance to Combustibles
- > Adjustable Leveling Legs (KBN Models only)
- > Wall Mount Bracket (WBN Models only)
- > 12-Year Limited Warranty (See Warranty for Details)

Optional Equipment

- > Adjustable High Limit with Manual Reset
- > Flow Switch
- > Low-Water Cutoff with Manual Reset and Test
- > Alarm Bell on Any Failure
- SMART SYSTEM™ PC Software
- > Concentric Vent Kit
- > Condensate Neutralization Kit
- > Multi-Stack Frame (KBN Models only)

300 Maddox Simpson Parkway, Lebanon, TN 37090 | 615-889-8900 | fax: 615-547-1000 | www.lochinvar.com

KBN-04 (Replaces KBN-03 8/07)

MK-20M-2/08-Printed in U.S.A.

Conversion of System to Hydronic (Hot Water) Operation & Installation of Fan-Coil Units Served by Water-to-Water Ground-Source Heat Pumps

	1	Gill R	iverside/Four Wind	ls School	Electricity	
Oil Rate (\$/gallon)	7 t d - Q - Nd	7	Gill, MA	N G 114	\$/KWH	
\$2.98	Existing Condition:			New Condition:	\$0.144	
Equipment Type	Space Heating Boiler			Ground-Source Heat Pump		
Boiler#	1			2		
Make	H B Smith			Hydron		
Model	2000A/2000L/200L Mills		Heat Pumps (2)	HWT092 (ELT-110/50)		
Type	Atmospheric		Fan Coil Units (10)	MHWW-18-H-3		
Heating Medium	Steam			Water-to-Water		
Control Mode	255		Rating (tons)	14.5		
Maximum Output Mbtu/Hr	255			174		
Steady State Eff Input Mbtu/Hr	80% 319			294% 59		
Seasonal Eff	65%			367%		
Percentage of Load	100%			100%		
Installed System Costs	25070	High-Performan	ce Heating System	10070		
Boiler	\$34,892		:-to-Water Heat Pumps			
DUICI	φ <i>5+</i> ,072					
			Ten (10) Fan-Coil Units			
			upling: Borefield with		1	
		Six (6) 330 Foot Boreholes	\$114,000	Cost information provi	ded by Richard B
	Four N	etworkable Programmable	"Smart" Thermostats	\$3,580	contractor quotes	not yet requested
			Subtotal	\$117,580		
			Contingency	\$11,758		
			Subtotal	\$129,338		
		System Configure	ation Contractor Oversight	\$12,934		
Totals	\$34,892	, ,	Total	\$142,272		
Annual		Existing	New		Peak	Provide (#
Building	Summary of	Oil	Electricity		Space	1
Operating	Existing	Heating	Heating	Fuel Cost	Heating	Boilers @
Load	Building-Related	Usage	Usage	\$	Load	100%
(MMbtu/year)	Heat Loads	Gallons	KWH	Ψ	(Mbtu/hr)	of design Lo
			KWII	\$5.205		
160,205	Existing Oil Use	,	12 500	\$5,295	174	174
160,205	New Electricity Use	kwh	12,790	\$1,842		
Fuel Energy Before	246,470	KWH				
Fuel Energy After	·					
Fuel Energy saved			Savings \$	\$3,454		
Fuel Ellergy saveu	202,817		Savings \$	φ 3,434		
arbaak Calculation		7				
ayback Calculation:		C 4	G	Deed 1	*	
		Cost	Savings	Payback	Incentive per Ton	
'ull Equipment Cost Basi		\$142,272	\$3,454	41.2		
denewable Thermal Ince	ntive (CEC/DOER)	-\$28,933			\$2,000	
Itility Incentive (Mass-S	ave)	-\$1,157			\$80	
ull Equipment Cost Basi	s after Incentive:	\$112,181	\$3,454	32.5		
ncremental Equipment (Cost Rasis	\$107,380	\$3,454	31.1		
			φυ,τυτ	J1.1		
enewable Thermal Ince		-\$28,933				
tility Incentive (Mass-S		-\$1,157				
ncremental Equipment		\$77,289	\$3,454	22.4		

Ground-Source Heat Pump Data for Riverside-4 Winds School

From Baker GSHP Preliminary Report

Project: Gill Riverside Building HVAC upgrades

Prepared: March 13, 2014

Prepared By: Richard Baker, IGSHPA 24526-0209

RE: GSHP Preliminary Report Gill Riverside Building

System Loads

System loads or peak loads are calculated based on a variety of details for an individual facility, assumed occupancy levels, the number of appliances operating, the number of doors & windows, and the tightness of the construction all contribute to the amount of energy required to maintain the thermostat set points given the historical extreme weather conditions in your area.

1 kBtu/hr = 1,000 Btu/hr

Zone	Total Heating Load	Total Cooling Load	SHF
Zone 1	150.0 kBtu/hr		0.900
Total	150.0 kBtu/hr		

- 1. Peak Loads used here as provided by: Bart Bales, PE
- 2. This report is primarily concerned with heating load and associated operational costs therefore cooling load is not being considered at this point.

Equipment Schedule

Based on the provided loads and space configuration considerations, the preliminary GSHP equipment schedule for this system is as follows:

Zone	Equipment	QTY	Heat Capacity	Heat Capacity	Water Flow	Air Flow
			KBtu/hr	kBtu/hr	(GPM)	(CFM)
			(Low Stage)	(High Stage)		
Central	Hydron Module –	2	136.00	173.60	52.0	
Source	HWT092 (ELT-110/50)					
Distributed	MHWW-18-H-3	10		185.22	52.0	480

- 1. All capacities shown are total
- 2. For water to water equipment, source and load water flows are assumed equal.
- 3. Capacities are adjusted for 32F EWT and Glycol protection to 15F with EAT 70F and ELT 110F
- 4. When equipment allows continuous fan operation is recommended
- 5. Avoid using dramatic night time set back
- 6. Air Flow rates are reported on a per unit basis. For total air flow in a zone, multiply the reported air flow by quantity.
- 7. Installed GSHP COP 2.94 High Capacity and 4.17 Low Capacity

GSHP Selection

Manufacturer: **Hydron Module** Model: **HWT092**

Heat Pump Type: Wa	ater to Water	Capac	ity: I	Dual
		GSHP		

Installation	\$114,000.
Cost	

Ground Heat Exchange Summary

Grout is used inside of all bores in order to protect the deep earth environment from surface contaminants and to provide a more effective contact surface with GHEX piping that optimizes heat transfer between the fluid pumped through your GSHP and the earth. Deep Earth (below 20ft) temperature is a function of the average annual air temperature in your region and remains relatively constant regardless of season.

Deep Earth Temp (Tg) 52.0 F

Formation T.C.	1.30 Btu/hr ft F
Grout T.C.	1.00 Btu/hr ft F
EWTmin	30.0F
EWTmax	90.0F
Bore Diameter	6.00 in
Pipe Diameter	1.25 in

Bores in Series 1
Layout Rows 1
Bores per Row 6
Number of Bores 6

Bore Spacing 25.0 ft on center

Bore Depth 296 ft Adj. Bore Depth* 330 ft System Run Fraction 0.507

Adj. Bore Depth is the adjusted bore depth. This is the depth of bore that should be used to accommodate unbalanced ground loads over time. A pre-construction test bore is recommended.

Grouting the bore annulus: Each vertical bore is to be grouted from the bottom to the top. Grout field mix T.C. testing is recommended. Grout Recommendation: TGLite by GeoPro Inc.

GHEX Piping:

Vertical Bore: 1.25" HDPE SDR-11 with factory u-bend

Horizontal Piping:

From Bore to Building all pipe should be a minimum of 4' below grade.

Supply lines should be below Return lines.

2" foam board insulation should separate supply and return lines when feasible.

2" foam board insulation should be above return lines when feasible.

Horizontal piping should be in backfill free from material that may be a hazard to the pipe.

GHEX Manifold:

Vertical bore loopfield will be (3) individual closed loop circuits bringing in a total of (6) 1.25" supply and (6) 1.25" return lines. Interior piping: install full port valves on each supply and each return to a common supply and common return header. Install fill and drain ports followed by full port valves on header. Connect supply and return to pumping station.

Note: Mechanical or 'Stab' fittings are not recommended for any portion of exterior below grade piping. All exterior below grade pipe connections are to be by fusion of HDPE pipe and HDPE fittings.

Wall penetrations to be sealed with 'link seal' style fittings inside pvc sleeve. Sleeve sealed with either silicone, hydrolic cement or similar.

Recommended freeze protection - 22% to 15 F with Propylene Glycol

System Sequencing

- 1. Individual Fan Coil thermostat calls for conditioning
- 2. Hydronic circulation begins to and from conditioned Water Storage Tank
- 3. Water Storage Tank aqua-stat calls for conditioning
- 4. GHEX circulator pump responds causing flow in GHEX
- 5. GSHP provides desired conditioning to Water Storage Tank

It is recommended that where GSHP equipment allows that the fan be set to on at all times. This maintains desired air circulation blending conditioned air more evenly throughout the conditioned space. Doing this will reduce the circumstance of hot spot/cold spot improving occupant comfort and reducing overall energy consumption.

Equipment Efficiencies

Note: GSHP efficiencies shown below are system wide averages which include pumping and applicable resistance energy. ASHP efficiencies have been adjusted from manufacturer's stated HSPF to more closely reflect installed operation in your region.

GSHP (COP avg) 3.67 (for this application)

Installation of Split-System Air-Source Heat Pumps

	Sı	pace Heating Saving	s with Split Air-So	urce Heat Pump	System	
	~1		Riverside/Four Wind		Electricity	
O'l D-4- (\$/II)	1	Om P	Gill, MA	S SCHOOL		
Oil Rate (\$/gallon)	T 1 0 10	1	GIII, MA	N C P	\$/KWH	
\$2.98	Existing Condition:			New Condition:	\$0.144	
	Space Heating			Air-Source		
Equipment Type	Boiler			Heat Pump		
Boiler#	l vang ::			2		
Make	H B Smith		MUZEEON A (2)	Mitsubishi	MUZZELIONA (E)	
Model	2000A/2000L/200L Mills		MUZFE9NA (2)	MUZFE12NA (2)	MUZFE18NA (5)	
Type	Atmospheric		SEER: 26; HSPF:10	SEER: 23; HSPF:10	SEER: 20.2; HSPF:10.3	
Heating Medium Control Mode	Steam		Dating (tons)	Air-to Air 13.1		
Maximum Output Kbtu/Hr	255		Rating (tons)			
Steady State Eff	80%		Mean	157 280%		
Input Mbtu/Hr	319		Wiedii	56		
Seasonal Eff	65%			280%		
Percentage of Load	100%			100%		
Installed System Costs	100/0	High Doufousso	nce Heating System			
•	¢24.902	·			la	
Boiler		Nine (9) Split-System Air-S	•	\$50,000	Cost information provided	by Richard Baker
	Four	Networkable Programmah	le "Smart" Thermostats	\$3,580	contractor quotes not	yet requested
			Subtotal	\$53,580		
			Contingency	\$5,358		
			Subtotal	\$58,938		
		6 . 6 6		\$5,894		
m . 1	\$24.00 0	System Configi	uration Contractor Oversight			
Totals	\$34,892		Total	\$64,832		
Annual		Existing	New		Peak	Provide (#)
Building	Summary of	Oil	Electricity		Space	1
Operating	Existing	Heating	Heating	Fuel Cost	Heating	Boilers @
Load	Building-Related	Usage	Usage	\$	Load	100%
	Heat Loads	Gallons	KWH	Ψ	1.11	
(MMbtu/year)			КИП	φ σ. 20.5		of design Loa
160,205	Existing Oil Use	1,777		\$5,295	157	157
160,205	New Electricity Use		16,764	\$2,414		
		KWH				
Fuel Energy Before	246,470					
Fuel Energy After	57,216					
Fuel Energy saved			Savings \$	\$2,881		
r der Ellergy su ved	105,201		β u vings φ	Ψ2,001		
D 1 1 C 1 1 C		1				
Payback Calculation:					1	ı
		Cost	Savings	Payback	Incentive per Ton	
Full Equipment Cost Ba	nsis:	\$64,832	\$2,881	22.5		
Renewable Thermal In	centive (CEC/DOER)	,	ĺ			
Utility Incentive (Mass		-\$1,047			\$80	
	,	. /	φα 004	20.1	φου	
Full Equipment Cost Ba	asis after Incentive:	\$63,785	\$2,881	22.1		
Incremental Equipmen	t Cost Basis:	\$29,940	\$2,881	10.4		
Renewable Thermal In		\$0				
Utility Incentive (Mass		-\$1,047				
	-Dave i	-31.04/				
Incremental Equipmen	,	\$28,893	\$2,881	10.0		

Air Source Heat Pump Data for Riverside-4 Winds School

From Rich Baker ASHP Preliminary Report

Project: Gill Riverside Building HVAC upgrades

Prepared: April 14, 2014

Prepared By: Richard Baker, IGSHPA 24526-0209

RE: ASHP Preliminary Report Gill Riverside Building

System Loads

System loads or peak loads are calculated based on a variety of details for an individual facility, assumed occupancy levels, the number of appliances operating, the number of doors & windows, and the tightness of the construction all contribute to the amount of energy required to maintain the thermostat set points given the historical extreme weather conditions in your area.

1 kBtu/hr = 1,000 Btu/hr

Zone	Total Heating Load	Total Cooling Load	SHF
Zone 1	150.0 kBtu/hr		0.900
Total	150.0 kBtu/hr		

- 3. Peak Loads used here as provided by: Bart Bales, PE
- 4. This report is primarily concerned with heating load and associated operational costs therefore cooling load is not being considered at this point.

Equipment Schedule

Based on the provided loads and space configuration considerations, the preliminary GSHP equipment schedule for this system is as follows:

Zone	Equipment	QTY	Heat Capacity KBtu/hr	Heat Capacity kBtu/hr	Water Flow (GPM)	Air Flow (CFM)
			(Low Stage)	(High Stage)	(3)	(6)
	MUZFE09NA	2	, ,	21,800		
	MUZFE12NA	2		27,200		
	MUZFE18NA	5		108,000		

- 1. Equipment is Mitsubishi
- 2. Heat Capacity is based on manufacturer data at 5F
- 3. Heat Capacities shown are total
- 4. AHRI#: FE09 4908219 : FE12- 4934170 : FE18- 4217888

Anticipated cost to install: \$ 50,000.

WALL & ATTIC INSULATION MEASURE INFORMATION

School

	Location	Measure	Depth	R-Value	# / SF	Cost
1	Walls	Cellulose Net & Blow	4	14	3,264	\$6,528
2	Attic Floor	Cellulose Open Blow	9	33	3,260	\$4,727
3	Attic Floor	Cellulose OB to R60 Adder	6	22	3,260	\$1,141
4	Attic	Air Sealing	0	N/A	20	\$1,400
5	Attic	Duct Capped & Sealed	0	N/A	6	\$660
6					0	\$0
	Total					\$14,456

^{*} Assumes that ductwork will be removed to the attic floor and left clean for air sealing. Insulation costs were provided by EnergiaUS located in Holyoke, MA.

Energía, LLC 242 Suffolk Street Holyoke, MA 01040 (413) 322-3111

ECM#2			Summary of End	ergy Savings Due	to Attic In:	sulation	
	,						
			Baseline Heat Load	After ECM #2	Savings	%	
			MMBTU	MMBTU	10E6 Btu/yr	Reduction	
Fuel Energy	/ Usage (MI	MBtu/yr)	159.43	130.20	29.23	18.3%	
New I	Boiler System	efficiency	92%	92%			
Fuel En	ergy Usage (I	MMBtu/yr)	173	142			
Energy	Savings		% Reduction	Propane Use after ECM1	Gallons Saved	\$/Unit	\$ Saved
			18.3%	1,678	308	\$2.150	\$661
					Tota	I Savings (\$)	\$661
						<u> </u>	-
				Cost	Savings	Payback	
Attic Insulation&			Measure	\$	\$	Years	
Air Sealing	\$7,828		ECM2	\$7,828	\$661	11.8	
Note:							
Cost estimates were dev	eloped by BEA b	ased upon q	uotes by EnergiaUSA				

				<u> </u>			
ECM#3		Su	mmary of Energy	Savings Due to V	Vall & Attic	c Insulation	on
					T		
			Baseline Heat Load	After ECM #2	Savings	%	
			MMBtu	MMBtu	10E6 Btu/yr	Reduction	
Fuel Energy U	sage (MI	MBtu/yr)	130.20	49.31	80.89	62.1%	
New Boil	ler System	efficiency	92%	92%			
Fuel Energ	y Usage (I	MMBtu/yr)	142	54			
Energy Sa	vings		% Reduction	Propane Use after ECM1 &	Gallons Saved	\$/Unit	\$ Saved
			62.1%	1,370	851	\$2.150	\$1,830
					Tota	I Savings (\$)	\$1,830
				Cost	Savings	Payback	
			Measure	\$	\$	Years	
Wall Insulation	\$6,528		ECM3	\$6,528	\$1,830	3.6	
Note:							
Cost estimates were develop	ed by BEA b	ased upon q	uotes by EnergiaUSA				

ANNUAL BUILDING HEAT BALANCE EXISTING CONDITIONS

	HEA	T BALAN	CE	
GAINS AN	D LOSSES	BTU/HEA	TING SEASC	N*1E6
CONDUCT	TION LOSSES		-184.7	
INFILTRA	TION LOSSES	S	-51.6	
VENTILAT	ION LOSSES		0.0	
SOLAR GA	AIN		60.5	
OCCUPAN	IT GAIN		6.6	
ELECTRIC	CAL GAIN		9.8	
NET HEA	TING DEM	AND	-159.4	
	Net Heating	/Energy	Seasonal	
	Demand	Required	Efficiency	
	(MMbtu)	(MMbtu)	%	
	159.4	246	65%	

		CONDU	JCTION I	LOSSES			
			HOURS/	DAYS/	TEMP	LOSSES	Sub
#	Zone	UA	DAY	-	DIFF	(* 1E6)	Totals
1	Basement	264	6	0	20	0	
		264	18	0	20	0	
		264	24	212	20	27	26.9
			•				
2	First Floor Main	1,008	6	140	35	30	
		1,008	18	140	25	63	
		1,008	24	72	20	35	127.9
3	First Floor Office	236	6	140	35	7	
		236	18	140	25	15	
		236	24	72	20	8	29.9
	Total UA	1,507		Con	duction T	otal	184.7

				INFILTE	RATION I	OSSES			
			0.4						
#	Zone	VOLUME	ACH	HRS/ DAY	DAYS/ YR	0.018	TEMP DIFF	LOSSES (* 1E6)	Sub Totals
1	Basement	20,758	0.40	18	0	0.018	20	0.0	
		20,758	0.40	24	212	0.018	20	15.2	
	Occ.	20,758	0.40	6	0	0.018	20	0.0	15.2
2	First Floor Main	31,136	0.45	18	140	0.018	25	15.9	
		31,136	0.45	24	72	0.018	20	8.7	
	Occ.	31,136	0.48	6	140	0.018	35	7.9	32.5
3	First Floor Office	3,758	0.45	18	140	0.018	25	1.9	
		3,758	0.45	24	72	0.018	20	1.1	
	Occ.	3,758	0.48	6	140	0.018	35	1.0	3.9
	•			,					
						Infi	tration T	otal	51.6

		HEAT LO	SS COEFFICIENTS			
Zone	Building		U-Value	Area		UA-Value
#	Zone		(BTU/hr-sf-F)	(sf)		(BTU/hr-F)
1	Basement	Roof	0.097	0		0
	•	Walls	0.302	675		204
		Below grade	0.000	1,240		0
		Doors	0.625	42		26
		Windows	0.400	27		11
		Slab/Floor	0.008	2,883		23
		-	Win	ng UA Total	264.1	
						•
2	First Floor Main	Roof	0.097	2,883		205
		Walls	0.279	2,119		591
			0.000	0		0
		Doors	0.625	36		23
		Windows	0.400	473		189
		Slab/Floor	0.040	0		0
			Win	ng UA Total	1007.7	
						4
3	First Floor Offices	Roof	0.097	348		34
		Walls	0.279	548		153
			0.000	0		0
		Doors	0.625	0		0
		Windows	0.400	88		35
		Slab/Floor	0.040	348		14
			Win	ng UA Total	235.6	
				m . 1 vy . 1	4505 :	
			Buildin	g Total UA:	1507.4	

	R	iverside Buildin	ng	
	Win	dow Solar Heat C	Fain	
Window	Solar Heat	Window	Shading	Total BTU per
Orientation	Gain Factor	Area	Factor	Heating Season
	(BTU/SF)		(Max =	*E6
	Heating Season		.52)	
	40 N Latitude			
North	37,730	220	0.49	4.1
Northeast	58,231	0	0.49	0.0
South	315,304	363	0.49	56.1
Southeast	256,605	0	0.49	0.0
East	150,216	0	0.49	0.0
Northwest	58,231	0	0.49	0.0
West	150,216	5	0.49	0.4
Southwest	256,605	0	0.49	0.0
	Totals	588		60.5
				•

			Tempera	ture & Sche	dule Inform	ation	
		Build	ing Name:	Riverside Bu	ilding		
	Total Heating Days	212			Floor SF		
Outd	oor Winter Temperature	35			6,114		
					Htg	Includes 1.5 warm-up	
					System	period	Occ Level
					Dystein	periou	OCC LEVEI
	Wing name	Occupied	Unoccu	pied Temp.	Occ. Hrs	period	Heating
	Wing name	Occupied Temp.	Unoccu Night	pied Temp. Off days	-	Schedul e	
1	Wing name Basement				Occ. Hrs		Heating
1 2		Temp.	Night	Off days	Occ. Hrs per day *	Schedule	Heating Days

ANNUAL BUILDING HEAT LOADS AFTER ATTIC INSULATION & AIR SEALING

	ATTI	C INSULA	TION					
GAINS AN	D LOSSES	BTU/HEA	TING SEASO	N*1E6				
CONDUC	TION LOSSES	-159.5						
INFILTRA'	TION LOSSES	-47.7						
VENTILAT	VENTILATION LOSSES							
SOLAR GAIN			60.5					
OCCUPANT GAIN		6.6						
ELECTRIC	CAL GAIN	9.8						
NET HEA	TING DEM	-130.2	_					

		CONDI	UCTION I	LOSSES			
			HOURS/	DAYS/	TEMP	LOSSES	Sub
#	Zone	UA	DAY	-	DIFF	(* 1E6)	Total
1	Basement	264	6	0	20	0	
		264	18	0	20	0	
		264	24	212	20	27	26.9
2	First Floor Main	837	6	140	35	25	
		837	18	140	25	53	
		837	24	72	20	29	106.3
	<u> </u>						
3	First Floor Office	208	6	140	35	6	
		208	18	140	25	13	
		208	24	72	20	7	26.3
	Total UA	1,309		Cor	duction T	otal	159.

				INFILTE	RATION I	LOSSES			
				HRS/	DAYS/		TEMP	LOSSES	Sub
#	Zone	VOLUME	ACH	DAY	YR	0.018	DIFF	(* 1E6)	Totals
1	Basement	20,758	0.40	18	0	0.018	20	0.0	
		20,758	0.40	24	212	0.018	20	15.2	
	Occ.	20,758	0.40	6	0	0.018	20	0.0	15.2
2	First Floor Main	31,136	0.40	18	140	0.018	25	14.1	
		31,136	0.40	24	72	0.018	20	7.7	
	Occ.	31,136	0.43	6	140	0.018	35	7.1	29.0
	-			•				,	
3	First Floor Office	3,758	0.40	18	140	0.018	25	1.7	
		3,758	0.40	24	72	0.018	20	0.9	
	Occ.	3,758	0.43	6	140	0.018	35	0.9	3.5
	_			1	ı			1	
						Infi	ltration T	otal	47.7

		HEAT LO	OSS COEFFICIENTS			
Zone	Building		U-Value	Area		UA-Value
#	Zone		(BTU/hr-sf-F)	(sf)		(BTU/hr-F)
1	Basement	Roof	0.015	0		0
		Walls	0.302	675		204
		Below grade	0.000	1,240		0
		Doors	0.625	42		26
		Windows	0.400	27		11
		Slab/Floor	0.008	2,883		23
			Wii	ng UA Total	264.1	
						-
2	First Floor Main	Roof	0.016	2,883		34
		Walls	0.279	2,119		591
			0.000	0		0
		Doors	0.625	36		23
		Windows	0.400	473		189
		Slab/Floor	0.040	0		0
			Wii	ng UA Total	837.0	
						•
3	First Floor Offices	Roof	0.016	348		6
		Walls	0.279	548		153
			0.000	0		0
		Doors	0.625	0		0
		Windows	0.400	88		35
		Slab/Floor	0.040	348		14
			Win	ng UA Total	207.5	

ANNUAL BUILDING HEAT LOADS AFTER WALL INSULATION & ATTIC INSULATION & AIR SEALING

HEAT LOAD AFTER WALL &								
ATTIC INSUL	ATION							
GAINS AND LOSSES BTU/HI	EATING SEASON*1E6							
CONDUCTION LOSSES	-78.6							
INFILTRATION LOSSES	-47.7							
VENTILATION LOSSES	0.0							
SOLAR GAIN	60.5							
OCCUPANT GAIN	6.6							
ELECTRICAL GAIN	9.8							
NET HEATING DEMAND	-49.3							
	·							

		CONDU	JCTION I	LOSSES			
			HOURS/	DAYS/	TEMP	LOSSES	Sub
#	Zone	UA	DAY	-	DIFF	(* 1E6)	Totals
1	Basement	111	6	0	20	0	
		111	18	0	20	0	
		111	24	212	20	11	11.3
2	First Floor Main	428	6	140	35	13	
		428	18	140	25	27	
		428	24	72	20	15	54.4
3	First Floor Office	102	6	140	35	3	
		102	18	140	25	6	
		102	24	72	20	4	12.9
	Total UA	641		Con	duction T	otal	78.6

		HEAT LO	SS COEFFICIENTS			
Zone	Building		U-Value	Area		UA-Value
#	Zone		(BTU/hr-sf-F)	(sf)		(BTU/hr-F
1	Basement	Roof	0.015	0		0
		Walls	0.075	675		51
		Below grade	0.000	1,240		0
		Doors	0.625	42		26
		Windows	0.400	27		11
		Slab/Floor	0.008	2,883		23
			Wi	ng UA Total	111.0	
						_
2	First Floor Main	Roof	0.016	2,883		34
		Walls	0.086	2,119		182
			0.000	0		0
		Doors	0.625	36		23
		Windows	0.400	473		189
		Slab/Floor	0.040	0		0
			Wi	ng UA Total	428.3	
						_
3	First Floor Offices	Roof	0.016	348		6
		Walls	0.086	548		47
			0.000	0		0
		Doors	0.625	0		0
		Windows	0.400	88		35
		Slab/Floor	0.040	348		14
			Wi	ng UA Total	101.7	